Proceedings of the International Conference “Embedded Electronics and Computing Systems(EECS)” 29-30 July, 2011 by S K R engineering COLLEGE,CHENNAI-600123

T. Senthil Prakash1 and Dr.P. Thangaraj2
1 PhD Research Scholar, PRIST University, Thanjavur, Tamilnadu, India

jtyesp@yahoo.co.in

2 Professor Head, Department of Computer Science, Bannari Amman Institute of Technology, Sathyamangalam, Tamilnadu, India

An Efficient Index Support for Item Set Mining using Vertical Algorithm

Abstract--- The IMine index structure provides the more common and compact sructure for the close integration of item set mining in a relational DBMS. The IMine index structure can be effectively utilized by several item set extraction techniques. Research activity in frequent itemset mining has been primarily concentrated on defining effective algorithms to carry out the computationally intensive knowledge mining process. Apriori is a horizontal format algorithm, which is previously used for mining frequent item sets. Since it has to scan the database repeatedly to obtain support degree of the candidate sets, the time utilization in this task is very high. Numerous enhanced algorithms like FP-growth have been proposed to reduce the comparison times between candidate sets and the transaction records. Since these enhanced algorithms uses the horizontal format, the comparson time is still very high. In this paper proposed a new vertical algorithm which eliminates this comparison task and hence the performance can be improved significantly. Many experiments were done on both sparse and dense data distributions, proves the effectiveness of the proposed algorithm.
Keywords--- Data Mining, Item Set Extraction, Indexing, Vertical Algorithm.
I. Introduction
A

PRIORI algorithm is used for mining frequent item sets which follows the horizontal format. Apriori algorithm [16] requires the scanning of database continuously to obtain the support degree of the candidate sets. The time consumption taken by this algorithm is very high since it uses the horizontal format. Association rule mining finds out the correlations among data items in a transactional database. Research activities typically concentrates on efficient algorithms for item set extraction, which characterizes the most computationally thorough knowledge extraction process in association rule mining [17]. The data to be examined is normally stored into binary files, probably obtained from a DBMS [2]. The majority of algorithms make use of ad hoc main memory data structures to extract item sets from a flat file. In recent times, disk-based extraction approaches have been developed to maintain the extraction from huge data sets [9], [15], but still no approaches developed for data stored in flat files.

IMine index (Item set-Mine index) offers a compressed and whole representation of transactional data assisting well-organized item set extraction from a relational DBMS. It is characterized by the following properties:
· It is a covering index. No constraint (e.g., support constraint) is imposed throughout the index construction stage. Hence, the extraction can be achieved through the index alone, without accessing the original database. The data representation is absolute and permits reusing the index for mining item sets with any support threshold [6].

· The IMine index is a common structure which can be competently exploited by a variety of item set extraction algorithms. Data access functions have been formulated for effective loading in memory the index data. Once in memory, data is available for item set extraction by means of the algorithm of choice.
· IMine supports item set extraction in huge data sets [9]. It takes the advantage of directly writing approach to avoid representing in memory the complete large data set.
Numerous improved algorithms have been proposed to reduce the comparison times between candidate sets and the transaction records. Enhanced algorithms like FP-growth have been proposed to reduce the comparison time. These algorithms have played a significant role in this regard. In this paper proposed a novel algorithm called Vertical Algorithm [12] which eliminates this comparison process and the performance of the itemset extraction has been increased significantly.
II. Literature Survey
This section presents some of the existing techniques for mining the frequent itemsets [18].
E. Baralis et al., [4] suggested itemset mining on indexed data blocks. This paper proposes a novel index, called I-Forest, to maintain data mining activities on developing databases, whose content is occasionally updated through insertion or deletion of data blocks. I-Forest permits the mining of itemsets from transactional databases such as transactional data from huge trade chains. Item, support and time constraints may be imposed throughout the extraction phase. The proposed index is a covering index that corresponds to transactional blocks in a succinct form and permits different kinds of examination (e.g., analyze quarterly data). Throughout the creation stage no support constraint is needed. Thus, the index offers an entire illustration of the developing data. The I-Forest index has been executed into the Post-greSQL open source DBMS and develop its physical level access methods. Experiments conducted on both sparse and dense data distributions. The implementation time of the frequent itemset [11] mining task exploiting the index is always comparable with and for least support threshold quicker than the Prefix-Tree algorithm [13] accessing static data on at file.
XuePing Zhang et al., [10] proposed an Improved paralleled algorithm for mining frequent item-set used in HRM. Depending on the FP-tree algorithm, this paper introduced the technique of multi-thread processing and a Multi-Threaded Paralleled frequent item-set mining Algorithm - MTPA. To evaluate the performance of this algorithm, the author implemented this proposed algorithm in an enterprise human resources management system. From the experimental results it is proved that the paralleled mining with increased multi-thread processing, enhances the effectiveness of frequent item-set mining significantly on multi-core processors.
E. Baralis et al., [2] recommended itemset mining on indexed data blocks. Numerous attempts have been offered to combine data mining activities with relational DBMSs, but a correct incorporation into the relational DBMS [2] kernel has been infrequently achieved. This paper suggested an innovative indexing method, which denotes the transactions in a succinct form, suitable for tightly incorporating frequent itemset [10]mining in a relational DBMS. The data illustration is complete, i.e., no support threshold is imposed, with the intention to permit reusing the index for mining itemsets with any support threshold. In addition, a suitable structure of the stored information has been developed, in order to permit a selective access of the index blocks [14] essential for the current extraction stage. The index has been executed into the PostgreSQL open source DBMS and utilizes its physical level access techniques. Many experiments have been done on several datasets, characterized by dissimilar data distributions. The implementation time of the frequent itemset [12] mining task exploiting the index is constantly similar with and sometime quicker than a C++ execution of the FP-growth technique accessing data stored on a flat file.

S. Sahaphong [1] suggested frequent itemsets mining using vertical index list. In this paper, the author proposes a new technique to mine all frequent itemsets that executes database scanning only once to create data structure. This arrangement uses the conceptual of vertical data outline to include transaction data. The altering of minimal support is not effected by the data structure and rescan of database is not needed. This technique has the capability of discovering frequent itemsets [5] without creation of candidate itemsets. It achieves absolute and accurate frequent itemsets. The experimental observation illustrates that this technique provides all definitions and accuracy of frequent itemsets.
L. Golab et al., [3] proposed indexing time method for evolving data with variable lifetimes. Numerous applications store data items for a pre-determined, fixed duration of time. Earlier researches on management of data with limited lifetimes have emphasized online query processed in main memory. In this approach, the authors concentrate on the difficulty of indexing time- developing data on disk for offline investigation [16]. With the intention of decreasing the I/O costs of index updates, existing work separates the data chronologically. Thus, only the previous separation is examined for expirations, only the youngest separations acquire insertions, and the remaining partitions in the middle are not processed. On the other hand, this result is based upon the hypothesis that the order in which the data are introduced is equivalent to the termination order, which means that the lifetime of each data item is the similar. In order to break this hypothesis, the authors reveal that the existing solutions no longer be relevant, and suggested a new index partitioning strategies that provide low update costs and quick access times.

III. Methodology
3.1. IMine Index Structure
The structure of the IMine index is described by two structures: the Item set-Tree and the Item-Btree. The two structures offer two levels of indexing. The Item set-Tree (I-Tree) is a prefix-tree [13] which symbolizes relation using a concise and lossless compact structure. The Item-Btree (I-Btree) is a B+Tree organization which permits reading preferred I-Tree portions all through the extraction task. For every item, it stores the physical locations of all item occurrences in the I-Tree. Thus, it supports resourcefully loading from the I-Tree the transactions in relation comprising the item.
3.1.1. I-Tree
An efficient method to neatly store transactional records is to make use of a prefix-tree. Trees and prefix-trees have been commonly used in data mining and data warehousing indices. This proposed implementation of the I-Tree is depends on the FP-tree data structure, which is provides a compact and lossless representation of relation R. But, as the two index components are intended to be independent, alternative I-Tree data structures can be easily incorporated in the IMine index.
	TID
	ItemID

	1
	g, b, h, e, p, v, d

	2
	e, m, h, n, d, b

	3
	p, e, c, i, f, o, h

	4
	j, h, k, a, w, e

	5
	n, b, d, e, h

	6
	s, a, n, r, b, u, i

	7
	b, g, h, d, e, p,

	8
	a, i, b

	9
	f, i, e, p, c, h

	10
	t, h, a, e, b, r

	11
	A, r, e, b, h

	12
	z, b, i, a, n, r

	13
	b, e, d, p, h

Figure 1: Example data set.

(a)

(b)

Figure 2: IMine index for the example data set. (a) I-Tree. (b) I-Btree

Fig. 1 reports (in a more concise form than its actual relational representation) a small data set used as a running example, and Fig. 2 shows the complete structure of the equivalent IMine index. Nodes in I-Tree paths (Fig. 2a), are sorted by lessening support of the equivalent items. For the items with the similar support, nodes are arranged by item lexicographical order. In the I-Tree, the regular prefix of two transactions is represented by a single path. For example, consider transactions 3, 4, and 9 in the illustrated data set. These transactions, once arranged as illustrated above, share the common prefix [e:3,h:3], which is a single path in the I-Tree. Node [h:3] is the root of two subpaths, representing the remaining items in the considered transactions.
Nodes in the I-Tree are connected by pointers which permit selectively loading from disk the index portion essential for the extraction process. Each node contains three pointers to nodes in the tree. Each pointer stores the physical location of the corresponding node. An arbitrary node (e.g., [p:3] in the example I-Tree in Fig. 2a) involves the following links: a) Parent pointer (continuous edge linking node [p:3] to node [d:5]). b) First child pointer (dashed edge linking node [p:3] to node [g:2]). When a node contains more direct descendants, this pointer points to the first child node inserted in the I-Tree. c) Right brother pointer (dotted edge linking node [p:3] to node [n:2]). When a node contains many brothers (i.e., direct descendants of the same father), the pointer points to the first brother node inserted in the I-Tree after the current node. These pointers permit equally bottom-up and top-down tree traversal, therefore enabling item set extraction with different types of constraints.
3.1.2. I-Btree
The I-Btree permits selectively accessing the I-Tree disk blocks throughout the extraction process. It is based on a B+Tree structure. Fig. 2b shows the I-Btree for the example data set and a segment of the pointed I-Tree. For every item i in relation R, there is one entry in the I-Btree. Especially, the I-Btree leaf related to i contains i’s item support and pointers to every nodes in the I-Tree related to item i. Every pointer stores the physical location of the record in table TI_Tree storing the node. Fig. 2b shows the pointers to the I-Tree nodes associated to item r.
3.2. IMine Physical Organization
The physical organization of the IMine index is intended to reduce the cost of reading the data required for the existing extraction process. The I-Btree permits a selective access to the I-Tree paths of interest. Hence, the I/O cost is mostly given by the number of disk blocks read to load the necessary I-Tree paths.
When visiting the I-Tree, nodes are examined from table TI_Tree with the help of their correct physical location. But, fetching a particular record needs to load the complete disk block where the record is stored. Alternatively, once the block is in the DBMS buffer cache, reading the further nodes in the block does not involve additional I/O cost. So, to decrease the I/O cost, correlated index parts, i.e., parts that are accessed collectively throughout the extraction task must be clustered into the same disk block. The I-Tree physical organization is based on the following correlation types.
· Intratransaction correlation: An Extraction algorithm believes together items taking place in the same transaction. Items appearing in a transaction are thus basically correlated. To diminish the number of read blocks, each I-Tree path are supposed to be partitioned in a limited number of blocks.
· Intertransaction correlation: Transactions with some items in general will be accessed collectively when item sets including the familiar items are extracted. Hence, they should be stored in the similar blocks. In the I-Tree, the familiar prefix of different transactions is denoted by a single path. Additionally to enhance transaction clustering, subpaths with a specified percentage of items in general should be stored in the similar disk block.

3.3. IMine Index Materialization for Large Databases
The IMine index offers a complete representation of the database, which assists the extraction of item sets satisfying various types of constraints. Throughout the index creation method, initially the I-Tree is entirely built in main memory and subsequently written on disk. In the case of huge databases [15], the I-Tree may not completely fit in memory. Therefore, a technique is proposed to avoid storing in memory the complete I-Tree, by openly writing on disk a portion of it.
This technique permits to construct the entire IMine index for huge databases without enforcing any constraint, at the same time dropping index construction time. A minor overhead in terms of required disk space may be established when the data distribution is thick. In this situation, some nodes may actually have support higher than one. Thus, a single index subpath is instead represented by two different paths. The I-Tree compactness may be reduced and some overhead in data access may be introduced.
3.4. Item Set Mining
Numerous approaches have been developed for item set extraction. These approaches are different mostly in the adopted main memory data structures and in the plan to visit the search space. The IMine index can maintain all these different extraction approaches. As the IMine index is a disk resident data structure, the method is structured in two sequential steps: a) the required index data is stored and b) item set extraction occurs only on the stored data. Once data are loaded in memory, the suitable approach for item set extraction can be implemented.
3.4.1. Frequent Item Set Extraction
This section illustrates the process of frequent item set extraction followed on the IMine index. The Vertical algorithm is used in this approach.
This vertical algorithm mine frequent item sets with vertical format. It is enough for this technique to scan the database only once to gather the frequent 1-item set. Also, there is no requirement for scanning the database again.

Advantages of using vertical algorithm in order to mine frequent item sets are
· It has the capability to evaluate whether the non-frequent item sets prior to generating candidate item sets.
· Time is much reduced.
· As all TID set of k-item set performs the entire information that can compute the support degree, so it is not necessary to scan the database to compute the support degree of (k+1)-item set.

Description of the algorithm
Initially, this algorithm scans the database to obtain frequent 1-item set. Next, frequent 1-item set which are in horizontal format is changed to vertical format. Then ‘and operation’ is performed between the elements of frequent item set Lk and the results are recorded.
If the result is more than the min_sup, a candidate set Ck+1is achieved, otherwise the next ‘and operation’ is performed. The ‘and operation’ is carried out till there is a frequent item set left and there is no way to perform ‘and operation’ or all the results of ‘and operation’ is less than min_sup.

Figure 3: Vertical Algorithm

IV. Experimental Results
The IMine structure is independent of the extraction algorithm. To confirm its generality, this paper compares the FP- Growth and vertical algorithms frequent item set extraction time. Since the main intention is to evaluate the performance of the algorithms on the extraction stage, the time for writing the created item sets is not considered. The comparison of Frequent item set extraction time of FP- Growth and vertical algorithms according to the Minimum Support % is given the Table I.
Table I: Frequent item set extraction time for the FP- Growth algorithm and Modified FP- Growth algorithms
	Minimum Support %
	Extraction Time

	
	FP-Growth
	Vertical Algorithm

	5
	2794
	2211

	10
	2045
	1791

	15
	1246
	906

	20
	766
	451

	25
	342
	199

	30
	240
	112

The comparison of frequent item set extraction time of FP-Growth and vertical algorithms according to the Minimum Support % is shown in figure 4. From the Fig. 4 it is very clear that the vertical algorithm has very low extraction time than the FP-based algorithm.

[image: image1.png]FP-Growth

—®—Vertical

A\ }

Figure 4: Comparison of Frequent Item Set Extraction Time of FP- Growth and Vertical Algorithm
These results clearly indicate the importance of using vertical algorithm. This is mainly because of the reduction in comparison process.
V. Conclusions
A database index is a data structure that enhances the rate of speed of data retrieval process on a database table. The use of index provides the quick extraction time even for the large database. It is very easy to store and access these indexes, instead of searching in the entire database. The IMine index makes the process of storage, retrieval and accessing of the information very easier. In this paper, the vertical algorithm is used for the extraction of frequent itemsets. This algorithm significantly reduces the frequent item set extraction time when compared with the FP-Growth algorithm. During the process of extraction, it takes more time to read all the physical data blocks. Therefore, it is necessary to reduce the number of physical data blocks read throughout the mining process. For this purpose, correlated information can be stored in the same block. This concept will definitely improve the performance of this IMine index. Also, the comparison process is reduced by using the proposed approach. The experimental results indicates that the proposed technique in better mining in lesser time.
VI. References
[1] S. Sahaphong, “Frequent itemsets mining using vertical index list,” 2nd IEEE International Conference on Computer Science and Information Technology (ICCSIT), pp. 480 – 484, 2009
[2] E. Baralis, T. Cerquitelli, and S. Chiusano, “Index Support for Frequent Itemset Mining in a Relational DBMS,” Proceedings 21st International Conference on Data Engineering (ICDE), pp. 754 - 765, 2005.
[3] L. Golab, P. Prahladka and M.T. Ozsu, “Indexing Time-Evolving Data With Variable Lifetimes,” 18th International Conference on Scientific and Statistical Database Management, pp. 265 – 274, 2006.

[4] E. Baralis, T. Cerquitelli and S. Chiusano, “Itemset Mining on Indexed Data Blocks,” 3rd International IEEE Conference on Intelligent Systems, pp. 820 – 825, 2006.
[5] G. Grahne and Jianfei Zhu, “Mining frequent itemsets from secondary memory,” Fourth IEEE International Conference on Data Mining (ICDM '04), pp. 91 – 98, 2004.

[6] Yin-Ling Cheung and Ada Wai-Chee Fu, “Mining Frequent Itemsets without Support Threshold: With and without Item Constraints,” IEEE Transactions on Knowledge and Data Engineering, Vol. 16, No. 9, pp. 1052-1069, 2004.
[7] G. Grahne and J. Zhu, “Fast algorithms for frequent itemset mining using FP-trees,” IEEE Transactions on Knowledge and Data Engineering, Vol. 17, No. 10, pp. 1347 – 1362, 2005.

[8] Xuegang Hu, Wei Liu, Dexing Wang and Xindong Wu, “Mining Frequent Itemsets Using a Pruned Concept Lattice,” Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007), Vol. 3, pp. 606 – 610, 2007.
[9] E.J. Keogh and M.J. Pazzani, “An indexing scheme for fast similarity search in large time series databases,” Eleventh International Conference on Scientific and Statistical Database Management, pp. 56 – 67, 1999.

[10] XuePing Zhang, YanXia Zhu and Nan Hua, “Improved paralleled algorithm for mining frequent item-set used in HRM,” Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Vol. 6, pp. 2830 – 2833, 2010.
[11] Dong Liyan, Liu Zhaojun, Shi Mo, Yan Pengfei, Tian Zhuo and Li Zhen, “A novel method of mining frequent item sets,” IEEE International Conference on Information and Automation (ICIA), pp. 173-178 , 2010.

[12] Guo Yi-ming and Wang Zhi-jun, “A vertical format algorithm for mining frequent item sets,” 2nd International Conference on Advanced Computer Control (ICACC), Vol. 4, pp. 11 – 13, 2010.
[13] G. Liu, H. Lu, Y. Xu and J. X. Yu, “Ascending frequency ordered prefix-tree: Efficient mining of frequent patterns”, In Database Systems for Advanced Applications (DASFAA), 2003.

[14] E. Gudes, “A uniform indexing scheme for object-oriented databases,” Proceedings of the Twelfth International Conference on Data Engineering, pp. 238 – 246, 1996.
[15] M. El-Hajj and O. R. Zaiane, "Inverted matrix: Efficient discovery of frequent items in large datasets in the context of interactive mining" In Association for Computing Machinery's Special Interest Group on Knowledge Discovery and Data Mining, 2003.
[16] Wang Cuiru, Wang Shaohua, An Improved Apriori Algorithm for Association Rules. Computer Technology and Applications, February 2008.
[17] Jiawei Han, Micheline Kamber, Data Mining: Concepts and Techniques, 2nd ed. China Machine Press, 2006, pp.155–160.
[18] M. El-Hajj and O.R. Zaiane, “Inverted Matrix: Efficient Discovery of Frequent Items in Large Datasets in the Context of Interactive Mining,” Proc. Ninth ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining (SIGKDD), 2003.

e:7

h:7

d:5

b:10

h:3

i:2

e:3

i:3

a:3

a:2

r:2

t:1

n:2

m:1

q:2

p:3

v:1

r:2

n:2

z:1

s:1

u:1

c:2

f:2

p:2

o:1

a:1

j:1

k:1

w:1

Top Layer

Middle Layer

Bottom

Layer

E I N S

A B C D E

6

6

6

6

6

T U V W Z

1

1

1

1

1

J K M N

1

1

1

4

F G H I

2

5

4

1

O P R S

1

5

4

1

b:10

e:7

h:7

d:5

p :3

q:2

n:2

a:3

i:3

n :3

r:3

a:2

r:2

m:1

v:1

t:1

z:1

s:1

u:1

Input: D, min_sup

Output: Lk

 L1=find_frequent_1-itemsets (D);

 For (k=2;|Lk|>1;k++)

 Lk =P(Lk-1,min_sup)

 RETURN UkLk

Procedure P(D, min_sup)

{

 Lk=null;

 For(i=0; i<Lk-1.count; i++)

 For(j=i+1; j<Lk-1.count; j++)

 {

 If(Lk-1[i].string(k-2)=Lk-1[j].string(k-2))

 Then item.Tid=Lk-1[i].Tid∩Lk-1[j].Tid

 If(item.Tid.length>=min_sup)

 Then Lk.add(item)

 }

 }

_1368430815.xls
Chart1

		5		5

		10		10

		15		15

		20		20

		25		25

		30		30

FP-Growth

Vertical Algorithm

2794

2211

2045

1702

1246

811

766

441

342

156

240

112

Sheet1

		X-Values		FP-Growth		Vertical Algorithm

		5		2794		2211

		10		2045		1702

		15		1246		811

		20		766		441

		25		342		156

		30		240		112

				To resize chart data range, drag lower right corner of range.

