Proceedings of the International Conference “Embedded Electronics and Computing Systems(EECS)” 29-30 July, 2011 by S K R engineering COLLEGE,CHENNAI-600123

preprocessed document content procedure

K.Maheswari
PhD Research Scholar, Mother Teresa Women’s University, Kodaikanal
mahemaks@gmail.com
 Dr.P.Thangaraj

Professor Head, Dept of CSE, Bannari Amman Institute of Technology, Sathyamangalam

Abstract:
The text documents are used for the clustering process. The text documents are composed with a lot of noisy elements. The stop words are the notable noise in every document. Stop words, or stopwords, is the name given to words which are filtered out prior to, or after, processing of natural language data. The stemming process is required to group up the given word with reference to its suffix values. The preprocessing is required to reduce the document content. All the analysis operations are done on the preprocessed document contents. It is a centroid-based clustering algorithm, where a set of cluster centroids is generated to describe the clustering solution.
1. Introduction
 Clustering techniques are used group the transaction databased on similarity. Data clustering techniques are applied on structured data sets. Documents are unstructured data sets. Document preprocessing is applied to convert the documents into structured data sets.
1.1. Stop Word Elimination

Stop words, or stopwords, is the name given to words which are filtered out prior to, or after, processing of natural language data. Hans Peter Luhn, one of the pioneers in information retrieval, is credited with coining the phrase and using the concept in his design and implementation of KWIC (Key Word - In-Context) indexing programs. This KWIC concordence helps to identify the main sences of the selected word and produce definitions for each of the sence identified.

 One way stopwords are viewed is using Claude Shannon's model of information, in which there is a sender, encoder, medium, decoder, and receiver. A message sent by a sender is first encoded, transferred over a medium, then decoded by the receiver. In the process of passing over the medium there may be noise which disrupts or distorts the message. This is analogous to the children's whisper game, or to speaking to someone over a bad cell phone connection. This concept of noise makes the message harder to interpret and reduces its usefulness and informative quality. In written or spoken natural language communication, stop words can be viewed as a type of signal noise which disrupts the ability to quickly ascertain the relevance of search results or the meaning and importance of words in a document. By filtering out such words, the message becomes clearer or more useful.

Typically, stop words are filtered based on their level of 'usefulness' within a given context or usage, such as a search engine. Search engines filter out stopwords to reduce index size, or to assist users in providing search queries that will net better results, by avoiding searches for words which appear in almost every document searched, which does not provide a way for the search engine to distinguish among documents and rank them appropriately. A stoplist, the name commonly given to a set or list of stopwords, is typically language specific, although it may contain words. A search engine or other natural language processing system may contain a variety of stoplists, one per language, or it may contain a single stoplist that is multilingual.

Some of the more frequently used stop words for English include "a", "of", "the", "I", "it", "you", and "and These are generally regarded as 'functional words' which do not carry meaning. The assumption is that, when assessing the contents of natural language, the meaning can be conveyed more clearly, or interpeted more easily, by ignoring the functional words. In another case, some text mining tools may offer customizable lists.
 When performing KWIC indexing or extracting a list of keywords or performing concept mining, text classification, or one of the several tasks of natural language processing, a common task is to remove the most frequent words, manually, through the use of a stop list Some tools go as far as to automatically ignore the top X words, regardless of the stop list.
The stop list, in this regard, is a form of 'background knowledge' that is controlled by human input and not automated. This is sometimes seen as a negative approach to natural language processing as brute force search is seen as overly-simple and not elegant. It also turns out that the top 10 words in an index tend to be functional words like articles of speech as mentioned above.

There is no definite list of stop words which all Natural language ProcessingTools incorporate Not all NLP tools use a stoplist. Some tools specifically avoid the use of a stoplist in order to support phrase searching. The use of a stemming algorithm may reduce part of the rational or dependence on a stoplist to filter out words.

1.2. Stemming Process

Stemming is the process for reducing inflected words to their stem, base or root form generally a written word form. The stem need not be identical to the morphological root of the word; it is usually sufficient that related words map to the same stem, even if this stem is not in itself a valid root. The algorithm has been a long-standing problem in computer science. The process of stemming, often called conflation, is useful in search engines for query expansion or indexing and other natural language processing problems. Stemming programs are commonly referred to as stemming algorithms or stemmers

The first ever published stemmer was written by Julie Beth Lovins in 1968. This technique was remarkable for its early date and had great influence on later work in this area. A later stemmer was written by Martin Porter and was published in the July 1980 issue of the journal Program. This stemmer was very widely used and became the de-facto standard algorithm used for English stemming. Dr. Porter received the Tony Kent Strix award in 2000 for his work on stemming and information retrieval.

Many implementations of this algorithm were written and freely distributed; however, many of these implementations contained subtle flaws. As a result, these stemmers did not match their potential. To eliminate this source of error, Martin Porter released an official free-software implementation of the algorithm around the year 2000. He extended this work over the next few years by building Snowball, a framework for writing stemming algorithms, and implemented an improved English stemmer together with stemmers for several other languages. There are several types of stemming algorithms which differ in respect to performance and accuracy and how certain stemming obstacles are overcome.
1.3. Porter Stemming Algorithms

The Porter stemming algorithm is a process for removing the commoner morphological and inflexion endings from words in English. Its main use is as part of a term normalization process that is usually done when setting up Information Retrieval systems.

Figure 4.1: Architecture for Document Preprocess

1.4. Term Frequency Estimation
The document indexing can be performed with reference to the TF and IDF values. The TF and IDF values are estimated with respect to the term count and the document count. The term frequency refers the occurrences of a term in a document. The document frequency for a term denotes that the number of documents for a particular term. The IDF is referred as Inverse Document Frequency. The IDF is estimated by using the formula. The term weight is estimated with the following formula.

Term Frequency = Number of times a particular term present in the given document (TF)

Document Frequency = Number of documents having a given term (DF)

Inverse Document Frequency = The importance of the term in the collection (IDF).

Log (D/DF) where d is the number of documents in the collection

Weight of the Term =
TF * IDF

Non_zero_vector = <0.60 0.24 0.60 .024

 1.20 0.30 0.12 0.30 0.60>

Col_vector
 = <0 1 0 1 2 3 1 3 4>

Row vector = <0 2 4 6 9 >

Weight for matrix in D0 is
TF * IDF = 2* 0.12 =0.24

Term frequency Table (1.4) for sample collection
	Term_Id
	Term
	DF
	IDF

	0
	Compression
	0
	0.30

	1
	Matrix
	3
	.012

	2
	Vector
	1
	0.60

	3
	Multiplication
	2
	.030

	4
	Sparse
	1
	060

2.1 The HP2PC Distributed Architecture

HP2PC is a hierarchically distributed P2P architecture for scalable distributed clustering of horizontally partitioned data. We argue that a scalable distributed clustering system should involve hierarchical distribution. A hierarchical processing strategy allows for delegation of responsibility and modularity.

Central to this hierarchical architecture design is the formation of neighborhoods. A neighborhood is a group of peers forming a logical unit of isolation in an otherwise unrestricted open P2P network. Peers in a neighborhood can communicate directly but not with peers in other neighborhoods. Each neighborhood has a supernode. Communication between neighborhoods is achieved through their respective supernodes. This model reduces flooding problems usually encountered in large P2P networks.

[image: image1.png]

This type of hierarchy is illustrated in Figure. 4.2
The notion of a neighborhood accompanied by a supernode can be applied recursively to construct a multilevel overlay hierarchy of peers; i.e., a group of supernodes can form a higher level neighborhood, which can communicate with other neighborhoods on the same level of the hierarchy through their respective supernodes.
2.2 The HP2PC Distributed Clustering Algorithm

The HP2PC algorithm is a distributed iterative clustering process. It is a centroid-based clustering algorithm, where a set of cluster centroids is generated to describe the clustering solution. In HP2PC, each neighborhood converges to a set of centroids that describe the data set in that neighborhood. set of centroids that describe the data set in that neighborhood.the final set of centroids of a neighborhood will be identical to those produced by centralized K-means on the data within that neighborhood. Other neighborhoods, either on the same level or at higher levels of the hierarchy, may converge to another set of centroids.

Once a neighborhood converges to a set of centroids, those centroids are acquired by the supernode of that neighborhood. The supernode, in turn as part of its higher level neighborhood, collaborates with its peers to form a set of centroids for its neighborhood. This process continues hierarchically until a set of centroids is generated at the root of the hierarchy.

2.2.1. Estimating Clustering Quality

The distributed search for cluster centroids is guided by a cluster quality measure that estimates intracluster cohesiveness and intercluster separation. The distribution of pairwise similarities within a cluster is represented using a cluster similarity histogram, which is a concise statistical representation of the cluster tightness.

2.2.2 Distributed Clustering (Level h = 0)

We define a general function for updating cluster models in a fully connected neighborhood:

ci,t = f ({cj,t-1}), i,j (q, (13a)

ci,0 = c0, (13b)

where ci,t is the clustering model (a set of clusters) calculated by peer i at iteration t, and f(() is an aggregating function. The equation can be illustrated by Fig. 4.2, where the output of each peer at iteration t depends on the models calculated by all other peers at iteration t - 1. In P2P K-means, f(() (avg(() and the neighborhood are based on ad hoc network topology.

2.2.3 Distributed Clustering (Level h > 0)

Once a neighborhood converges to a set of clusters, the centroids and weights of those clusters are acquired by the supernode as its initial set of clusters; i.e., for neighborhood qr with supernode spr
 cr,0,(h) = cr,T ,(h-1),
where T is the final iteration of the algorithm at level h – 1 for neighborhood qr.

Since at level h of the hierarchy the actual data objects are not available, we rely on metaclustering: merging the clusters using centroid and weight information alone. At level h > 0, clusters are merged in a bottom-up fashion, up to the root of the hierarchy; i.e., c(h) = f(c(h-1)). This means once a neighborhood at level h converges to a set of clusters, it is frozen, and the higher level clustering is invoked.

A neighborhood at level h consists of a set of peers, each having a set of K centroids. To merge those clusters, the centroids are collected and clustered at the supernode of this neighborhood, using K-means clustering. This process repeats until one set of clusters is computed at the root of the hierarchy. The formal procedure representing this clustering process is presented in Algorithm 1.
Algorithm 1 HP2PC Clustering
1: for all qi (q(0) do
2: {mi}(0) = NeighborhoodCluster(qi)

3: end for

4: for h = 1 to H do
5:
for all qi (q(h) do
6:
 for all pj (qi do
7:

{mj} = {mj}(h-1)
8:

SendTo(spi, {mj})

9:
 end for

10: {mi}h = K-means({mj}) {only at peer spi}

11: end for

12: end for

3. Conclusion:
 Clustering techniques are used group the transaction databased on similarity. Data clustering techniques are applied on structured data sets. Documents are unstructured data sets. Document preprocessing is applied to convert the documents into structured data sets. The distributed document clustering schemes are used to cluster documents in distributed environment. The Hierarchical Peer to peer document-clustering algorithm is used to cluster documents. The system includes dynamic node management and glopal centroid optimization schemes. The semantic analysis is added to improve clustering process.

 The HP2PC model allows building hierarchical networks for clustering data. The flexibility of the model, showing that it achieves comparable quality to its centralized counterpart while providing significant speedup and that it is possible to make it equivalent to traditional distributed clustering models by manipulating the neighborhood size and height parameters. The semantic analysis improves the clustering and summarization process with term relationship. The dynamic nodes join and leave operations are included in the system.

4 .REFERENCES

1. Witten - “Text Document Processing”

2. Khaled M. Hammouda, Diego N. Matute, and Mohamed S. Kamel "CorePhrase: Keyphrase Extraction for Document Clustering".

3. Khaled M. Hammouda, Mohamed S. Kamel "Document Similarity Using a Phrase Indexing Graph Model" Springer-Verlag London Ltd. 2004 Knowledge and Information Systems (2004) 6: 710-727.
4. Khaled M. Hammouda Mohamed S. Kamel “Incremental Document Clustering Using Cluster Similarity Histograms” 2003.
5. Jinyang Li and Robert Morris “Document Clustering for Distributed Fulltext Search” 2002.

6. Tao Liu, Shengping Liu and Zheng Chen “An Evaluation on Feature Selection for Text Clustering” Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

7. Xiaojun Wan and Jianguo Xiao “Single Document Keyphrase Extraction Using Neighborhood Knowledge” Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008).

8. Yanjun Li, Congnan Luo and Soon M. Chung “Text Clustering with Feature Selection by Using Statistical Data” IEEE Transactions On Knowledge and Data Engineering, vol. 20, no. 5, May 2008.

9. http://csdl2.computer.org/dl/trans/tp/2001/06/i0674.pdf

10. Caqdas.soc.surrey.ac.uk/PDF/CAQ07_FP_Yuwei_Lin.pdf –KWIC

11. www.qub.ac.uk
Text Document

Parsing Process

Eliminate

Stop Words

Suffix

Analysis

Suffix

Alignment

Stemmed

Word

Term Collection

