Proceedings of the International Conference “Embedded Electronics and Computing Systems(EECS)” 29-30 July, 2011 by S K R engineering COLLEGE,CHENNAI-600123by S K R engineering COLLEGE,CHENNAI-600123

Enhanced IPGDSF# Algorithm for Web Proxy Server Caching

Kavitha Subramani1 and G.Florance2
 Department of Computer Science and Engineering, Panimalar Engg College, Chennai.

kavitha_bhskr@yahoo.com 1, viji_florance59@rediffmail.com 2
Abstract

A web proxy caching is used to improve the performance of the web infrastructure and reduce network traffic, server load and user perceived retrieval delays. The heart of a caching system is its page replacement policy, which needs to make good replacement decisions when its cache is full and a new document needs to be stored. The latest and most popular replacement policies like GDSF and GDSF# use the file size, access frequency, and age in the decision process. The effectiveness of any replacement policy can be evaluated using two metrics: hit ratio (HR) and byte hit ratio (BHR). There is always a trade-off between HR and BHR [1]. In this paper, we have enhanced GDSF# policy using cached property of proxy server log. It is found that enhanced replacement policy IPGDSF# performs better than several policies proposed in the literature in terms of hit rate as well as byte hit rate.

Keywords: Web caching, Replacement Policy, Hit Ratio, Byte Hit Ratio, web log file
1. Introduction

A proxy server generally sits on the gateway of a corporate network. When a client system requests an object (web page, image, etc) from an origin server (server hosted publicly on the Internet), a proxy server interrupts the communication and checks if that object is already present in it (when caching is enabled). If it is present, it would provide it to the client by itself. If its not present, the request is forwarded over the Internet to the origin server. Proxy server caches (stores) the frequently requested content (web objects) and provides them directly to the clients when requested as shown in the figure 1. This saves a lot of bandwidth and helps in reducing the latency (time taken for an object’s request and arrival). Proxy servers can maintain logs (URL information, time at which it was requested, longevity of the web sessions, etc) and these logs can be retrieved when required.

In our survey, we were analyzing the performance of different caching policies for Web proxy servers[2,3,10]. First we need a better algorithm that increases hit ratios by several percentage points would be equivalent to a several-fold increase in cache size. Second, the growth rate of Web content is much higher than the rate with which memory sizes for Web caches are likely to grow. The only way to bridge this widening gap is through efficient cache management. Finally, the benefit of even a slight improvement in cache performance may have an appreciable effect on network traffic, especially when such gains are compounded through a hierarchy of caches.

Cao and Irani have surveyed ten different policies and proposed a new algorithm, Greedy-Dual-Size (GDS) in [4]. The GDS algorithm uses document size, cost, and age in the replacement decision, and shows better performance compared to previous caching algorithms. In GDS , the key value of document i is computed as follows,

 Hi=L+ci/si
L is a running aging factor, which is initialized to zero, ci is the cost to fetch object i from its origin server, and si is the size of object i. GDS chooses the object with the smallest Hi-value. The value of this object is assigned to L. if cost is set to 1,it becomes GDS(1), and when cost is set to p = 2 + size/536, it becomes GDS(P). In GDS frequency was incorporated to improve the better performance, resulting in Greedy-Dual-Frequency-Size (GDSF).
[image: image3.emf]
Figure 1: Caching Mechanism in Web Proxy Server

In GDSF, the key value of document i is computed as follows,
 Hi=L+(fi*ci)/si
The Inflation Factor L is updated for every evicted document i to the priority of this document i. In this way, L increases monotonically. However, the rate of increase is very slow. If we augment the frequency by using fi2,fi3,fi4,….etc instead of fi then the impact of frequency is more pronounced than that of size. Similarly, if we use si0.1,si0.2,si0.3,…..etc instead of si or log(si) then the impact size is less than that of frequency. Extending this logic we propose an extension to the GDSF called GDSF#[8,9].

In GDSF#, the key value of document i is computed as,
 Hi=L+(ci*fiλ)/siδ
where λ and δ are rational numbers. If we set λ or δ above 1, it augments the role of the corresponding parameter. Conversely, if we set λ or δ below 1, it weakens the role of the corresponding parameter i.e, which allows augmenting or weakening the impact of size or frequency or both on HR and BHR [5,6,7].
The next version called IPGDSF# is an intelligent one as it can adapt to changes in usage patterns as reflected by future frequency. This is because the parameter future frequency, which is used in assigning weight (key value) to the document while storing in the cache.

In this paper, we have enhanced algorithm called Intelligent Predictive Greedy-Dual- Frequency-Size#, (IPGDSF#) [13] by using cached property of proxy server log in calculating the future frequency. Enhanced IPGDSF# performs all algorithms under consideration in terms of hit rate (HR) as well as byte hit rate (BHR).

2. Enhanced IPGDSF#
To improve the better performance than several policies we extract future frequency from the web proxy server logs. In earlier works, estimates for future accesses were mostly built on measures such as access frequency, object size and cost. Such measures cannot be used to accurately predict for objects that are likely to be popular but have not yet been popular at any given instant in time. For example, as Web users traverse Web space, there are documents that will become popular soon due to Web document topology, although these documents are not yet accessed often in the current time instant [11,12]. Our approach is based on predictive Web caching model. Firstly, we use simple statistical techniques to find future frequency while Yang et al. use sequential association rules to predict the future Web access behavior. Secondly, for simplicity we do not try to identify user sessions. We assume that a popular document, which is used by one user, is likely to be used by many other users, which normally is the case for popular documents. We demonstrate the method empirically through increased hit rates and byte hit rates.

This algorithm is an intelligent one as it can adapt to changes in usage patterns as reflected by future frequency. This is because the parameter future frequency, which is used in assigning weight (key value) to the document while storing in the cache, can be computed periodically in order to keep track of the recent past.

We now consider how to find future frequency ffi for document i from the Web logs. We mine the preprocessed Web log files. We extract the unique documents whose key value is low, and reference was made using cached property from the log. Then we arrange these documents in the temporal order including reference information i.e the last page/object visited by the client is given as cached parameter of web log file is taken. Now for each unique document, we extract the number of future occurrences of that document. We call this parameter as future frequency, ffi. With this parameter, we have enhanced IPGDSF# by calculating Hi, the key value of document i as follows:

Hi=L+ (fi+ffi)λ*ci/siδ.
Here we add fi and ffi together, which implies that the key value of a document i is determined not only by its past occurrence frequency fi, but also by its future frequency ffi. By considering both the past occurrence frequency and future frequency, we can enhance the priority i.e. the key value of those objects that may not have been accessed frequently enough in the past, but will be in the near future according to the future frequency. The more likely it occurs in the future, the greater the key value will be. This will promote objects that are potentially popular objects in the near future even though they are not yet popular in the past.

Finally, we make the policy intelligent by periodically updating future frequency when some condition becomes false, e.g. at fixed time intervals or when there is a degradation in the cache performance.

Now we present the IPGDSF# algorithm as shown in Figure 2:

Initialize L=0

Open Web Log Files
 Extract lowest key valued documents.

 Arrange documents using cached property

 in temporal order.

For each unique document,

 ffi = future occurrences of document.
loop forever {

do{

Process each request document in turn:

let current requested document be i

if i is already in cache

 Hi=L+ (fi+ffi)λ*ci/siδ.

else

while there is not enough room in cache for i{

let L= min(Hi) for all i in cache

evict i such that Hi=L

}

load i into cache
 Hi=L+ (fi+ffi)λ*ci/siδ.
}while(condition);
update(future frequency ffi)

}

Figure 2: Enhanced IPGDSF# algorithm
3. Simulation Model, Factors

In case of proxy servers, all requests are assumed to be directed to the proxy server. When the proxy receives a request from a client, it checks its cache to see if it has a copy of the requested object. If there is a copy of the requested object in its cache, the object is returned to the client signifying a cache hit, otherwise the proxy records a cache miss. The original Web server is contacted and on getting the object, stores the copy in its cache for future use, and returns a copy to the requesting user. If the cache is already full when a document needs to be stored, then a replacement policy is invoked to decide which document (or documents) is to be removed.

Our model also assumes file-level caching. Only complete documents are cached; when a file is added to the cache, the whole file is added, and when a file is removed from the cache, the entire file is removed. For simplicity, our study completely ignores the issues of cache consistency (i.e., making sure that the cache has the most up-to-date version of the document, compared to the master copy version at the original Web server, which may change at any time).

Lastly, caching can only work with static files, dynamic files that have become more and more popular within the past few years, cannot be cached.

3.1 Factors and Levels

There are two main factors used in this simulation survey: cache size and cache replacement policy. This section describes each of these factors and the associated levels.

Cache Size

The first factor in this study is the size of the cache. For the proxy logs, we have used ten levels from 1 MB to 1024 MB except in case of BU-B19 trace; we have a upper bound of 4096 MB. Similar cache sizes are used by many researchers [13]. The upper bounds represent the Total Unique Mbytes in the trace, which is essentially equivalent to having an infinite size cache. An infinite cache is one that is so large that no file in the given trace, once brought into the cache, need ever be evicted. It allows us to determine the maximum achievable cache hit ratio and byte hit ratio, and to determine the performance of a smaller cache size to be compared to that of an infinite cache.

Replacement Policy

In our work we study performance of different replacement policy such as LRU, GDSF, GDSF#, and IPGDSF# for the Web proxy traces for hit rate, and byte hit rate. For the last three algorithms, we consider the cost function as one. In GDSF# and IPGDSF#, we use the best combination of λ = 2 and δ = 0.9 in the equation for Hi. Since we have already demonstrated that GDSF# is the champion of all the algorithms in terms of both hit rate and byte hit rate [6,7].

3.2 Performance Metrics

The performance metrics used to evaluate the various replacement policies used in this simulation are Hit Rate and Byte Hit Rate.
Hit Rate (HR) Hit rate (HR) is the ratio of the number of requests met in the cache to the total number of requests.
Byte Hit Rate (BHR) Byte hit rate (BHR) is concerned with how many bytes are saved. This is the ratio of the number of bytes satisfied from the cache to the total bytes requested.
4. Experimental Survey

The comparison of IPGDSF# with other algorithms.

[image: image1.png]Web Proxy server

Cache
- =
client ol Tnternet
| remr
Calavlating

Key
value(H;)

Origin
Server

[image: image2.emf]
Figure 3: Comparison of IPGDSF# with other algorithms using BU272 trace

From Figure 3, it can be seen that IPGDSF# outperforms all other algorithms in terms of hit rate as well as byte hit rate for the BU272 data. In case of hit rate, for a cache size of 16MB, there is a performance gain of 6.59% (from 30.62% to 37.21%) over LRU, 0.58% (from 36.63% to 37.21%) over GDSF and 0.99% (from 36.22% to 37.21%) over GDSF#.

 In case of byte hit rate, for a cache size of 16MB, there is a performance gain of 4.62% (from 18.64% to 23.26%) over LRU, 6.16% (from 17.10% to 23.26%) over GDSF and 4.73% (from 18.53% to 23.26%) over GDSF#.

5. Conclusion

In this paper, we have enhanced Intelligent Predictive Web caching algorithm, IPGDSF#, which tries to maximize both hit ratio and byte hit ratio. This will promote objects that are potentially popular objects in the near future even though they are not yet popular in the past. Thus, we find that our approach gives much better performance than the other algorithms, in the quantitative measures such as hit ratios and byte hit ratios of accessed documents. We believe that use of future frequency coupled with the adaptiveness is indeed the reason that makes our approach preferable to any other caching algorithm.

References

[1] M. Arlitt, R. Friedrich, & T. Jin, “Workload Characterization of Web Proxy Cache Replacement Policies”, In ACM SIGMETRICS Performance Evaluation Review, August 1999.

[2] M. Arlitt & C. Williamson, “Trace Driven Simulation of Document Caching Strategies for Internet Web Servers”, Simulation Journal, Volume 68, Number 1, Pages 23-33, January 1977.

[3] L. Cherkasova, “Improving WWW Proxies Performance with Greedy-Dual-Size-Frequency Caching Policy”, In HP Technical Report HPL-98-69(R.1), November 1998.

[4] P. Cao & S. Irani, “Cost-Aware WWW Proxy Caching Algorithms”, In Proceedings of the USENIX Symposium on Internet Technology and Systems, Pages 193-206, December 1997.

[5] M. F., Arlitt, L. Cherkasova, J. Dilley, R. J. Friedrich, & T. Y Jin, “Evaluating Content Management Techniques for Web Proxy Caches”, ACM SIGMETRICS Performance Evaluation Review, Volume 27, Number 4, Pages 3-11, March 2000.

[6] J. B. Patil and B. V. Pawar, “GDSF#, A Better Algorithm that Optimizes Both Hit Rate and Byte Hit Rate in Internet Web Servers”, International Journal of Computer Science and Applications, ISSN: 0972-9038, Volume 5, Number 4, Pages 1-10, 2008.

[7] J. B. Patil and B. V. Pawar, “Trace Driven Simulation of GDSF# and Existing Caching Algorithms for Internet Web Servers”, Journal of Computer Science, Volume 2, Issue 3, Page 573, March-April 2008.

[8] J. B. Patil and B. V. Pawar, “GDSF#, A Better Algorithm that Optimizes Both Hit Rate and Byte Hit Rate in Internet Web Servers”, BRI’S Journal of Advances in Science and Technology, ISSN: 0971-9563, Volume 10, No. (I&II), Pages 66-77, June, December 2007.

[9] J. B. Patil and B. V. Pawar, “GDSF#, A Better Web Caching Algorithm”, In Proceedings of International Conference on Advances in Computer Vision and Information Technology (ACVIT-2007), Co-sponsored by IEEE Bombay Section, Pages 1593-1600, Aurangabad, India, November 28-30, 2007.

[10] J. B. Patil and B. V. Pawar, “Trace Driven Simulation of GDSF# and Existing Caching Algorithms for Web Proxy Servers”, In Proceedings of The 6th WSEAS International Conference on DATA NETWORKS, COMMUNICATIONS and COMPUTERS (DNCOCO 2007), Trinidad and Tobago, November 5-7, 2007, Pages 378-384, ISBN: 978-960-6766-11-4, ISSN: 1790-5117.

[11] F. Bonchi, F. Giannotti, G. Manco, M. Nanni, D. Pedreschi, C. Renso, and S. Ruggieri, “Web Log Data Warehousing and Mining for Intelligent Web Caching,” In Proceedings of International Conference on Information Technology: Coding and Computing (ITCC’01 Pages 0599- , 2001.

[12] Q. Yang, and H.H. Zhang, “Web-Log Mining for Predictive Web Caching”, IEEE Transactions on Knowledge and Data Engineering, Volume 15, Number 4, Pages 1050-1053, July/August 2003.

[13] J. B. Patil1 and B. V. Pawar, ” Improving Performance on WWW using Intelligent Predictive Caching for Web Proxy Servers“ International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011.

