Proceedings of the International Conference “Embedded Electronics and Computing Systems(EECS)” 29-30 July, 2011
by S K R engineering COLLEGE,CHENNAI-600123

AXI Bus Master Interface Development Using Verilog
	Bhaskar Babu J

Student M Techm(DEC)

The Oxford College of Engineering

Bangalore, India bhaskar_b127@yahoo.co.in
	Lakshminarayana M

Sr.Lecturer, Dept of ECE

The Oxford College of Engineering

Bangalore, India

mlnphd101@gmail.com
	Malathi Chikkanna

Consultant

Wipro Technologies

Bangalore, India

malathi.chikkanna@wipro.com

Abstract— The ARM Advanced Microcontroller Bus Architecture (AMBA) AXI protocol is targeted at high-performance, high-frequency system designs and includes a number of features that make it suitable for high-speed submicrons interconnect. This paper focuses on design of AXI bus protocol. The AXI protocol is burst-based. Every transaction has address and control information on the address channel that describes the nature of the data to be transferred. The data is transferred between master and slave using a write data channel to the slave or a read data channel to the master. In write transactions, in which all the data flows from the master to the slave, the AXI protocol has an additional write response channel to allow the slave to signal to the master the completion of the write transaction. The VALID and READY handshaking mechanism in AXI allows both masters and slaves to control the flow of data. AXI protocol has the 5 channels which include Read and write address channels, Read data channel, Write data channel, Write Response channel.

Keywords— AMBA 3, AXI master,AMBA bus protocol
I. Introduction
The AXI specifications describe an interface between a AXI master and AXI Slave. Data can move in both directions between the master and slave simultaneously, and data transfer sizes can vary. AXI master interface can be designed for point-to-point communication. Following work involves developing AXI master for read and write transaction. AXI is the high-performance bus in the AMBA family. The architecture defines three write channels and two read channels.
· The write channels are address, write data, and response.

· The read channels are address and read data.

The write and read data buses may be defined as any 2n number (from 8-bit to 32-bit). 32-bit data bus for READ and WRITE Data channels [1]. AXI uses a handshake between VALID and READY signals. VALID is driven by the source, and READY is driven by the destination. Transfer of information, either address and control or data, occurs when both VALID and READY are sampled high.
II. Channels in AXI

AXI has five channels, three channels for write and two channels for read transactions [1].

 AXI master begins a read transfer by driving an address, ARADDR, and other control information with ARVALID. The slave drives read data, RDATA, with RVALID, and the transfer is made when RVALID and RREADY are sampled active. Complete AXI system design is shown in Fig 1.
For a write transfer, the AXI master begins by driving an address, AWADDR, and other transfer qualifiers with AWVALID. When WVALID is active, the first beat of write data is valid. WVALID may be driven with valid data even before or after the address that relates to it. The transfer is made when WVALID and WREADY are sampled active. The AXI master drives the last beat of write data with WLAST. Master takes ADDRESS from the corresponding host and sends control [valid, burst size, length, transfer ID] and start ADDRESS (ARADDR or AWADDR) signals on the corresponding channel. Once the master has sent all the signals, the slave receives them only if the ready signal is high. If the transfer has finished successfully then the slave returns back an OKAY signal. If the READY signal is not high then the counter after a while times out and the master goes into RESET state.
Write Data: It is similar as that of the address transfers with all the control signals and the data. Master sends data with WID along with it which must match with the AWID of the corresponding address. WLAST is the signal sent by the master to tell the slave that last data transfer has been done, which is an active high for one clock pulse. If the transfer has finished successfully then the slave returns back an OKAY signal over the write response channel.

[image: image1.png]HOST

Slave.

Fig 1: System Design,

Read Data: Master must read back the data from the register bank of the slave from the required address. In a read transaction, the slave can give different responses for different transfers within a burst. In a burst of 16 read transfers, for example, the slave might return an OKAY response for 15 of the transfers and a SLVERR response for one of the transfers.

Response signalling: The AXI protocol allows response signalling for both read and write transactions. For read transactions the response information from the slave is passed alongside the read data itself, however for writes the response information is conveyed along the write response channel. The OKAY response indicates the success of a normal access. OKAY is the response for most transactions. The burst type, coupled with the size information, details how the address for each transfer within the burst is calculated. The burst length gives the exact number of transfers in a burst. This information determines the number of data transfers associated with the address.

[image: image2.png]Read Transaction

™ me W Te

™ om e

™

B

7 n

spvudys)

189019

RRESP[1:0]
RVALD
RREADY

111)1 v]]r
EZEEETL B E T8
c2zyggEssleg g 2
S8 32z 2|2 g
<82 23 < % K
: g E
£

B = =
w0 <0Qxwunwn cw<a O<+<

[unspecifieddata [Data Transfer

(a)

[image: image3.png]‘Write Transaction

= TR e
sl S N mmﬁ
ey} TTTICIC AR T
B S HE R - 1 R A A
SRR IR INININ NN JBE mN i
:

e=al NN T LR
2 RORRE T UL T T T
ey TAan 1l T
B P B R AT
- S 1 L
< T UL T
2 ooooa] WU] ud

STYNOIS
1VE010

AWADDR[31:0]

|

WID[3:0]

WDATA[31:0]

Ba-ER Ade<

RO Znm
Eialal]

[vnspeciteddate [oata Transter

[5] Sloveto master

M) Mastr tosave

(b)

Fig 2. (a) Timing diagram for Read Transaction, (b) Timing diagram for Write Transaction
All signals are sampled on the rising edge of the global clock. Time-out signal is given for every transaction of Read, Write. Time-out is must to give a limit on the transaction delays. Error Reporting defines errors in the read and write response channels. The slave can respond with SLVERR if it detects a problem, and the interconnect can respond with DECERR if no slave accepts the transfer. Interrupts from masters are handled outside the AXI architecture. Depending on the type of error the master expects response in the response channel. Timing diagram for the Transactions are shown in Fig 2 (a) read transaction. Data Bus Width: AXI is defined with a choice of several bus widths, in 2n increments from 8-bit to 32-bit. No Slave Burst Termination: Once an AXI slave acknowledges a burst transfer, it is responsible for accepting all of the write data or generating all the read data associated with that burst. This simplifies master designs, since the master does not have to prepare to make a subsequent request if the slave terminated the original request before all of its data was transferred.
III. AXI master FSM

Finite State machine for the AXI master is explains the various states of transaction viz. read and write. Initially AXI master will be in reset condition till, when reset is active low AXI master enters IDLE state where it waits for the request from the host. The host will send the read or write request along with the address and control information.
 Fig 3 shows the FSM for the AXI master. READY / VALID handshake: Each channel has a pair of VALID / READY signal. VALID signal sent by the master when there is a control information and data. The slave can accept data using the instructions or by sending READY signal to the master.
[image: image4.png][New_req

I1Te_complete

thead_dataaid 11r_complete

(= Al

IWrite_data_ready Toe.

Fig 3: AXI master FSM for both read and Write transaction.
When the VALID and READY are high, Master and slave shake hands and this confirms that the information transmission is completed.
IV. Results
Paper objective was to develop verilog based design for AXI master for read and write transactions. AXI master transaction starts when the reset is active low. When a Host requests any read or write transaction from master by sending the Address and control information, Master provides appropriate enable signal through FSM to generate read or write transaction for slave. Simulation of these signals can be seen for the each transaction as shown in Fig 4 (a).
[image: image5.jpg]B File Edit View Simulator Signal Scope Trace Window Help =18 x|
[oxs-|leee(ssnex 5= sl | [
= e & $[AnyEdge || 1 BB @ Ef

> QAR @ 6@ i}

o aresetn

o host_axi_req

o host_axi_w,

o host_axd_cr

o-host_axi_ur. 32'hvoooc 000
o-host_axi_ph. 18uo0oc

-» awaddi{310]
- awsize[2:0]
-® awlen(3:0]

» awid[z:0]

-» awvalid

o awready

-®wid[30]

-0 wdata[31:0] 32'hvoooc 000

o wvalid Stx

=
e < | [- D O O e 0 M s O R e e -
RV sl | i

B wave.l L
top.duttwlast St Il top.dutt NA | NA

(a)
[image: image6.jpg]RE ity

B File Edit View Simulator Signal Scope Trace Window Help

[oxs-|lzee 8% niXx 5 al
e AIE
(ofeje}

| I
B of &
Qe@

=181xi

e-aresetn

o-host_axi_req

o-host_axi_w.
o-host_axi_ctr. 16'huooc|
B-host_axi_wr. 32'haoea x0c|
host_axiph. 15hioo]
> arid[a0] ahy
32'haoe X000 |
3'hx|
4hx|
S|
Stx)

-» araddr{ang]
- arsize[2:0]
> arlen(z0]

» arvalid
o-arready
o-rid[a0]

o rdata[31:0]
o rvalid St
St

o

o rreahy

| SO

Wave.l

Ready

500

24

1000 1500

Il top.dutt

200,

wa | A ElB

[

500

(b)
Fig 4: Simulation Output for (a) Write Transaction (b) Read Transaction
V. Conclusion

AXI master interface was developed using verilog. A verilog based testbench are developed and simulated using Synopsys VCS. Address and control information, write data, read data was transferred successfully. In the write transaction data was sent to the slave with the address to be stored at and during read transaction same data requested by host. Data received from slave was transferred to host successfully and verified the read and write data. This paper is suitable for implementation in an academic centre wishing to carry out a reusable interface protocol programme and paper also discusses the implementation of high performance AXI master interface.
References

[1] AMBA AXI Protocol Specification v1.0, ARM, 2003.

[2] Hyun-min Kyung, Gi-Ho Park, Jong Wook Kwak, WooKyeong Jeong, Tae-Jin Kim, Sung-Bae Park: Performance monitor unit design for an AXI-based multi-core SoC platform. SAC 2007: 1565-1572
[3] M. Caldari, M. Conti, M. Coppola, S. Curaba, L. Pieralisi, and C. Turchetti. Transaction-level models for AMBA bus architecture using SystemC 2.0. In Proceedings of the IEEE Design and Test in Europe Conference (DATE), pages 26–31, 2003.

978-1-4244-xxxx-x/09/$25.00 ©2009 IEEE
 10
 ACT09
3

