Proceedings of the International Conference “Embedded Electronics and Computing Systems(EECS)” 29-30 July, 2011
by S K R engineering COLLEGE,CHENNAI-600123

AXI Bus Slave Interface Design and verification
	Manu P N
Student: microelectronics & control systems M Tech

Dayananda sagar institute of tech
Bangalore, India
manu.padli@gmail.com
	Mrs.Rekha ramesh
Lecturer, Dept of IT
Dayanand sagar institute of tech
Bangalore, India

Rekharamesh.mysore@gmail.com
	Malathi Chikkanna
Consultant

Wipro Technologies
Bangalore, India

malathi.chikkanna@wipro.com

Abstract— The need for higher performance applications is driving the requirement for a new age of on-chip communication infrastructure. Increasing the clock frequency no longer addresses this higher performance requirement, as the bottleneck is inherent in the existing bus infrastructure.

This paper examines the advantages of the new AMBA™ 3 Advanced eXtensible Interface (AXI™) protocol over a register block slave for on-chip bus infrastructure, and how it revolutionizes the future of high-performance system-on-chip (SoC) interconnect. It describes the AMBA 3 AXI protocol feature set that makes it suitable for the new high-performance, low-latency and low-power designs. It also examines the verification tools and intellectual property (IP) necessary to successfully complete design and verification in today's reduced development design cycle.

Keywords— AMBA 3, AXI slave, register block.
I. Introduction
AXI is the high-performance bus in the AMBA family. This paper is basically about the design and verification of an AXI slave, considering a register block as the slave module which takes in the address and control information from the master and does the read and writes operations accordingly. The AXI specifications describe an interface between a single AXI master and a single AXI Slave. Data can move in both directions between the master and slave simultaneously, and data transfer sizes can vary.

 The architecture defines three write channels and two read channels. Shown in Fig 1.
· The write channels are address, write data, and response.

· The read channels are address and read data.

The write and read data buses may be defined as any 2n number (from 8-bit to 32-bit). 32-bit data bus for READ and WRITE Data channels[1].
AXI uses a handshake between VALID and READY signals. VALID is driven by the source, and READY is driven by the destination. Transfer of information, either address and control or data, occurs when both VALID and READY are sampled high. An AXI master begins a read transfer by driving an address, ARADDR, and other control information with ARVALID. The slave drives read data, RDATA, with RVALID, and the transfer is made when RVALID and RREADY are sampled active.

For a write transfer, the AXI slave receives AWVALID signal from the master interface. Slave recognizes it as a write transfer by comparing AWVALID and ARVALID. Whichever is high the transfer will be done accordingly. Once the AWVALID signal is received the slave must send AWREADY signal to the master if the slave is free and checking the AWID which will have the slave ID, Master ID and the transaction ID. If the AWID is matched then the transaction is continued further. Now if the Ids does not match and if the transaction is not completed correctly then error signals must be sent to the master to intimidate the failure of the transaction..
Slave receives ADDRESS from the master and sends control [valid, burst size, length, transfer ID] and start ADDRESS (ARADDR or AWADDR) signals on the corresponding channel. Once the master has sent all the signals, the slave receives them only if the ready signal is high. If the transfer has finished successfully then the slave returns back an OKAY signal. If the READY signal is not high then the counter after a while times out and the master goes into RESET state.
Write Data: It is similar as that of the address transfers with all the control signals and the data. Master sends data with WID along with it which must match with the AWID of the corresponding address. WLAST is the signal sent by the master to tell the slave that last data transfer has been done, which is an active high for one clock pulse. If the transfer has finished successfully then the slave returns back an OKAY signal over the write response channel.

Read Data: Master must read back the data from the register bank of the slave from the required address. In a read transaction, the slave can give different responses for different transfers within a burst. In a burst of 16 read transfers, for example, the slave might return an OKAY response for 15 of the transfers and a SLVERR response for one of the transfers.

Response signalling: The AXI protocol allows response signalling for both read and write transactions. For read transactions the response information from the slave is passed alongside the read data itself, however for writes the response information is conveyed along the write response channel.

The AXI protocol responses are:

• OKAY

• EXOKAY

• SLVERR

• DECERR.

The OKAY response indicates:

•
the success of a normal access

•
the failure of an exclusive access

•
an exclusive access to a slave that does not support exclusive access.

OKAY is the response for most transactions.
The burst type, coupled with the size information, details how the address for each transfer within the burst is calculated.
 The burst length gives the exact number of transfers in a burst. This information determines the number of data transfers associated with the address.
II. Design and implementation
[image: image1.png]Axi_slv_top_module

Axi_slv_top
_Input_ctr_s Axi_slv_fsm Register_block
ignals
Wi_addr_dh Axi_slv_hs ; Crtrl_signals
Axi_slv_reg_req Reg_req
Wi_data_ Reg_w_n
Ctrl_signals Reg_addr

Tesp_cl

Rd_addr_c!

 Fig 1: System Design,

Register Block:

 A register block here is a simple SRAM which is designed to process according to the AXI protocol. AXI slave once validated with a valid data or address will send in a register request signal (reg_req) to the register block, which is the Slave module. Slave must acknowledge this with a acknowledgment signal (reg_ack) within 2 clock pulses. If not there will be slave error signal which will be made active high indicating the master that there was some error in the transaction. Once the acknowledgment is received the slave checks for the READ/WRITE signal (reg_rw_n), which is active low signal and carries out the rest of the transfer accordingly. Now the address will be received. If it is a write transfer, then the register block receives dats from AXI slave and will be written in the corresponding address. If it is a read transaction then the data will be read back from the register block by the AXI slave and then sent to the requesting master.

[image: image2.png]Reg_req

Reg_rw_n

Reg_addr

—

Reg_wr_dat

Reg_rd_data

Reg_gddr
Memory
Contrl
IOQ": Reg_wr_data

Reg_rd_data

2

Memory
(RAM)
width=32 bits
Depth=65536

 Fig 2: Register Slave block design
AXI active-Low reset.
AXI Bus Clock. All signals are sampled on the rising edge of the global clock.
Time-out: For every transaction Read, Write. time-out is must to give a limit on the transaction delays.
Error Reporting: AXI defines errors in the read and write response channels. The slave can respond with SLVERR if it detects a problem, and the interconnect can respond with DECERR if no slave accepts the transfer. Interrupts from masters are handled outside the AXI architecture. Depending on the type of error the master expects response in the response channel.
Expected results:
[image: image3.png]Read Transaction

™ me W Te

™ om e

™

B

7 n

spvudys)

189019

RRESP[1:0]
RVALD
RREADY

111)1 v]]r
EZEEETL B E T8
c2zyggEssleg g 2
S8 32z 2|2 g
<82 23 < % K
: g E
£

B = =
w0 <0Qxwunwn cw<a O<+<

[unspecifieddata [Data Transfer

 Fig 3: Timing diagram for Read transaction,

As seen from the timing diagram address and all the other control signals will be sent on thire respective channels once the VALID signal is received over the address channel. VALID signal will be kept high till
the slave sends out the READY signal to the master. Once READY signal is received the address and data signal will be transferred according to the protocol. During write transaction WLAST will be sent by the master to the slave indicating the end of the write data transfer. If the pransfer is completed successfully then the OKAY signal will be sent to the master.
[image: image4.png]‘Write Transaction

= TR e
sl S N mmﬁ
ey} TTTICIC AR T
B S HE R - 1 R A A
SRR IR INININ NN JBE mN i
:

e=al NN T LR
2 RORRE T UL T T T
ey TAan 1l T
B P B R AT
- S 1 L
< T UL T
2 ooooa] WU] ud

STYNOIS
1VE010

AWADDR[31:0]

|

WID[3:0]

WDATA[31:0]

Ba-ER Ade<

RO Znm
Eialal]

[vnspeciteddate [oata Transter

[5] Sloveto master

M) Mastr tosave

 Fig 4: Timing diagram for Write transaction
Data Bus Width:
 AXI is defined with a choice of several bus widths, in 2n increments from 8-bit to 32-bit. No Slave Burst Termination: Once an AXI slave acknowledges a burst transfer, it is responsible for accepting all of the write data or generating all the read data associated with that burst. This simplifies master designs, since the master does not have to prepare to make a subsequent request if the slave terminated the original request before all of its data was transferred.
READY / VALID handshake: Each channel has a pair of VALID / READY signal. VALID signal sent by the master when there is a control information and data. The slave can accept data using the instructions or by sending READY signal to the master. When the VALID and READY are high, Master and slave shake hands and this confirms that the information transmission is completed.

FSM:

Figure 5 gives the FSM for the complete process, which receives the input control signals, verifies according to the protocol and generates ENABLE signals which will be used to initiate all the processes in the AXI slave interface.

[image: image5.png]Reset_n
Walid |

Reg_ack!

Reg_ack |

 Fig 5: Finite State Machine
Test bench:

Testbenches have become the standard method to verify HLL (High-Level Language) designs.
Testbenches perform the following tasks:
• Instantiate the design under test (DUT)
• Stimulate the DUT by applying test vectors to the model
• Output results to a terminal or waveform window for
 visual inspection
• Optionally compare actual results to expected results
[image: image6.png]Checker

stimulus T

(DesignUnderTest)

 Fig 6: Test bench setup

· Stimulus gernerates the test vectors for the transactions.
· Monitor captures all the transactions performed and logs it to a file.
· The design under test for performance verification is an AXI bus slave
· Checker used to check expected AXI signal sequence.
III. Results

 Results for this paper are the simulation results of the project, with Read and Write trnsation results shown separately as below.
[image: image7.png]Il IR s] CTRBBBREG S
2] Hflel=s[eoleta e e ==

[EamEE-B-2-98-[taq [aaaala]as (=

£ ~
BB - A
3 |res eaxs
Hierarchy || Variable - 3 [zey resetn:
o d
Thaxi_mstr (ax 0 reset_n 6 initial
=4 dut (axi_sl_[| -~ araddr(31 7 begin
T e (regic | 4~ awaddr{31 2 Lo
= wrapper (af| - n-wdata[31:C 10 @ (posedge clk! ;
{Fhandshal || #- - rdata[31:0] 11 reset_n = 0:
Threg_req_ || ¢ bresp[1:0] 12 Tepeat (5) @(posedge clki;
o 13 resetn = 0;
Dslave_for || |- arvalid 1 @posedge <l s
- arready 15 resetn = L;
rrlast 16 end
e rvalid 17
n 18 |awaye
rready 19 #5 clk = ~ clk;
- awvalid =
- awready 21 |wize [31:0] azadir; =
‘ ’LW‘ES“N _';‘ [Inftrng120/axi_shviaxi_siv_zitop.y [1 FlReuse
2| R Il = [

Log Atistory.

dve> l

= WA R _},;/I
2

 Fig 7: Simulation layout

Figure 7 shows the simulation layout which is obtained by simulating the Verilog codes written for the design of the AXI slave interface, register block, the stimulus (Master), Testbench and Test cases , which are stitched together to get a complete working module design and verification. As in the figure the hierarchy can be seen at the leftmost part of the simulation layout.
[image: image8.png]B -

8 File Edt View Simulator Signal Scope Trace Window Help _L8>
[xs-|[ee® 8 CRAEY | I
o Tlas &[|# $[AvEdge = 1 &

~ E~ B~ © QQ®X @ Gl @ i

Name Value
~.lgroup1

Dk Rl LTy Uy

0 reset_n st

- araddr(atio] 32'hicoce 0000

- awaddra 1] 32'hicoce 0000

- wdata[31:0] 32'hicoce 0000

- rdata[31:0] 32'hicoce 0000

- bresp[1:0] Zhe

- arvalid St

arready St

ntlast St

o rvalid St

nrready St

- awvalid St

- awready St

wlast St

o S L [E
1 i} 2l
B wave
op.awready St0] NA | A

N

 Fig 8: simulation result for the READ transaction
Figure 8 shows the snapshot of the READ transaction. Figure consists only the top module of the AXI slave interface. This has all the signals (address, control and data) which are mentioned in the protocol for the burst transfer. The data will be sent from the slave to the master with the response signals to intimate the master of the successful or erroneous transfer.
[image: image9.png][V -

B File Edit View Simulator Signal Scope Irace Window Help 181>
[Vxs- [eEe & CRAEY | I
2 e+ $[anyEdge [1 Ef

~ [~ 6~ 2 [- QAR @ 61 @]

Narme Value
- awaddra 1] 32'hic0cc 10000
- wdata[31:0] 32'hicoce 0000
- rdata[31:0] 32'hicoce 0000
- bresp[1:0] Zhe
- arvalid St
arready St
ntlast St
o rvalid St
nrready St
- awvalid St
- awready St
wlast St
wvalid St
rwready St
rbualid St
nbready St
New Groun oo o B R] B
2l » ¢
B wave
op.rvalid St0] NA | A

N

 Fig 9: simulation result for the WRITE transaction

Figure 9 shows the snapshot of the WRITE transaction. Figure consists only the top module of the AXI slave interface. This has all the signals (address, control and data) which are mentioned in the protocol for the burst transfer. Data will be written on to the register block to the corresponding address mentioned by the master.

IV. Conclusion
AXI slave interface was developed using verilog. A verilog based testbench was developed and simulated using Synopsys VCS. Address and control information, write data, read data was transferred successfully. In the write transaction data was received by the slave with the address to be stored at and during read transaction data was requested by host from the slave from the required address and the data was retrieved successfully and verified the read and write data. This paper is suitable for implementation in an academic centre wishing to carry out a reusable interface protocol programme and paper also discusses the implementation of high performance AXI master interface which can be implemented on ASIC or FPGA

V. REFERENCES
[1] AMBA AXI Protocol Specification v1.0, ARM, 2003.

[2] Hyun-min Kyung, Gi-Ho Park, Jong Wook Kwak, WooKyeong Jeong, Tae-Jin Kim, Sung-Bae Park: Performance monitor unit design for an AXI-based multi-core SoC platform. SAC 2007: 1565-1572
[3] M. Caldari, M. Conti, M. Coppola, S. Curaba, L. Pieralisi, and C. Turchetti. Transaction-level models for AMBA bus architecture using SystemC 2.0. In Proceedings of the IEEE Design and Test in Europe Conference (DATE), pages 26–31, 2003.

978-1-4244-xxxx-x/09/$25.00 ©2009 IEEE
 10
 ACT09
4

