Proceedings of the International Conference “Embedded Electronics and Computing  Systems(EECS)” 29-30 July, 2011
by  S K R  engineering COLLEGE,CHENNAI-600123

Design and Verification of OCPv3.0 [64-bit]-AXIv2.0 [32-bit] Bus Bridge 
Mr. Sanjivappa G #1, Mr. Pradeep Salla*2, Mrs. M. Bharathi #3 , Mr. Raghavendra M. Sunag #4
#1,#3,4 ECE Department, R V College of Engineering, R V Vidyanikethan Post Mysore Road, Bangalore-560 059, India.
* Renesas Mobile India Pvt. Ltd. Khata 23/24/25 & 26 Grape Garden, 17th H Main Road
6th Block, Koramangala, Bangalore-560 095 India. 
1sanjeev.bmsce@gmail.com  2pradeep.salla@renesasmobile.com 3bharathim@rvce.edu.in  sunag.raghu@gmail.com4


Abstract— With the increasing complexity of modern System-on-Chip (SoC) designs, more and more intellectual property (IP) blocks will be integrated into a chip. Bus Bridge is needed to mediate between IP blocks that use different protocols. In this paper, we discuss the design and verification Open Core Protocol (OCP) to Advanced eXtensible Interface (AXI) Bus Bridge. OCP has data bus width of 64-bit to AXI has data width of 32-bit.
Keywords— OCP, AXI, Bus Bridge, SVA and VHDL.
I. Introduction

Nowadays every electronic device comes with multimedia application. SoC must support very high speed data transfers which enable multimedia applications to run on the hand held device (mobile devices) without any interruptions. The efficiency of the on-chip bus has become a dominant factor for the performance of a system. To achieve such high speed data transfer on-chip bus must be efficient, the OCP bus protocol used to design the efficient on chip interface [3].
In the early stages of SoC design, cores were designed with many different interfaces and communication protocols. Integrating such cores in an SoC often required suboptimal glue logic to be inserted. In order to avoid this problem, standards for on-chip bus structures were developed. There are a few publicly available bus architectures from leading manufactures, such as the CoreConnectTM[4] from IBM and the AMBA from ARM[2]. These bus architectures are usually tied to a processor architecture, such as the PowerPC or the ARM. The AMBA AXI protocol is targeted at high-performance, high-frequency system designs and includes a number of features that make it suitable for a high-speed submicron interconnects.
II. DESIGN OF BUS BRIDGE 
Bus Bridge is designed by Finite State Machines (FSM). OCP to AXI Bus Bridge contains OCP slave FSM and AXI master FSM. The Block diagram of Bus Bridge is shown in figure 1.
A. OCP slave FSM:

OCP slave is component of Bus Bridge which is designed using state diagram shown in Figure. 2, Master request the slave by driving the request signals. Some of important basic request signals are MCmd, MBurstLength, MBurstPrecise, and MBurstSeq which indicate the type of operation. By these signals next state is determined and request is made to AXI master inside the Bus Bridge. The responses from AXI master received and converted into OCP responses. AXI master in turn gets the response from AXI slave component. 
[image: image1.jpg]e

ey
e





Figure. 1. Block Diagram of OCP-AXI Bus Bridge

[image: image2.png]



Figure. 2. State Diagram of OCP slave
B. AXI Master FSM:
 AXI is has 5 independent channels namely WRITE ADDRESS, WRITE DATA, RESPONSE, READ ADRESS, READ DATA channels. Each channel can operate independently achieves parallelism while performing the transactions. AXI master is designed with two FSM which can operate parallel and performs the parallel read and write transactions. One FSM controls the WRITE transactions other one controls the READ transactions.
In AXI protocol, on each channel has two hand shaking signals. All channels are unidirectional and information flows from source to destination. The source uses VALID to indicate info is available. The destination uses the READY to indicate is ready to accept the information.
AXI Master WRITE FSM State Diagram:

AXI Master WRITE FSM is shown in figure 3, consist of 3 states namely Idle, WR, WaitResp. In Idle state of WRITE FSM accept write the requests from OCP slave and drive the AWADDR by reading address from internal request signals of Bus Bridge. Asserts the AWVALID signal to indicate valid address is available for WRTE transactions. FSM decides its next state defending on signal AWREADY, the next state is WR if AWREADY is asserted else it stays in Idle state.
In the WR state master puts the valid on WDATA by reading internals signals of Bus Bridge which are driven by OCP slave and asserts the WVALID. FSM loops WR states which equal number of data (i.e. no. of beats) indicated by burst length of the transaction, then moves to WaitResp state and expects the response from the slave. Write transaction waveform is shown in figure 4. 
[image: image3.png]



Figure. 3. AXI Master WRITE State Diagram
[image: image4.emf]
Figure. 4. AXI WRITE Burst Transaction

Source: AMBA AXIv2.0 specification

AXI Master READ FSM State Diagram:

This FSM contains the 2 states namely Idle and RD. In Idle state of READ FSM read request are accepted. The READ FSM first reads the address present on internal signals and puts on ARADDR asserts ARVALID to indicate address is available. ARADDR is driven to default value after slave registered address. Readiness of slave to accept address is indicated by ARREADY. In the RD state master reads valid data on RDATA when RVALID asserted by AXI slave. FSM loops the RD state according signal ARLEN (Burst length). Slave indicates the last data beat by asserting RLAST.
[image: image5.png]ARBURST=BurstType ARSIZE=010"

RD
'ARADDR=0, ARValid=0
DATAOut<=Rdata
DATAValidOut<=1

RLAST!=1




Figure. 5 AXI Master READ State Diagram
[image: image6.emf]
Figure. 6. AXI READ Burst Transaction

Source: AMBA AXIv2.0 specification

[image: image7.png]5pv0
e pvaoon

o ——DS e
s> 8 AVSZE
[ E— T
e E— ¢y 2
[ E— ¢y
e — e
st I Y
wo———e v

woaral—D> e woima
wim—— D e werre
[ —
vl D ewan
el Dernoy

o —
ansoon e Aracon
ey e anien
anel e rnsee
ansunst el
pe e pnLock
ancaon e sncacte
o e anprr
anvacol v
" acol o
[y —

i
i
i
Juoue
i
Corcene
evrEioYD> e
FRY e i
froiae i
ecres D> Tovnio
e Tonnenon
eLARREADY S oo
o oD Thoers
arom O Toneer
erres D iy
e st Taio
rnise i
i
e !
e
oot !
oo )
i !
e R i
i e
e
[y
e ST
risrnse i
[riitis e
[Froe
e B B
i

© steatseaD>-

B B

eneo—]

[ m—

e

£ g >

EIMashonda >

Ertien




Figure. 7. Schematic of OCP3v0 to AXI2v0 Bus Bridge

C. Latch Based Clock gating  for Bridge:

Bus Bridge is designed to support latch based clock gating. Enable pin used to Enable or Disable clock to Bus Bridge. Clock to Bus Bridge is disabled when there is no command (i.e. Request) from the master. So dynamic power dissipation due to clocking is saved when there is no request. Figure. 8. shows the schematic of latch based clock gating.
[image: image8.png]rtic 13

in1

in2

Clkin

Combo Block




Figure. 8. Schematic of latch based Clock gating designed

III. VERIFICATION ENVIRNOMENT 
The Design Under Test (DUT) i.e. Bus Bridge is verified using BFMs (Bus Functional Model) designed in VHDL. OCP master BFM read stimulus file and drive OCP bus according to OCP protocol. The Bus Bridge covert OCP transaction to AXI transactions then AXI slave BFM responds the transaction. The AXI responses from AXI slave is converted to OCP responses by the Bus Bridge. Block diagram of verification environment is shown in Figure. 9.
[image: image9.png]T
PaseFail Database




Figure. 9 Block diagram of verification environment

D. OCP Master BFM
State diagram of OCP (Open Core Protocol) master with basic read/write, burst read/write, write non post consist of six states, namely IDLE, RD, WR, RD_BURST, WR_BURST, WRNP. OCP master BFM generates the basic Read/Write, Burst Read/Write, Write Non Post (WRNP) transactions. OCP transactions are generated by BFM is applied as stimulus to OCP-AXI Bus Bridge (DUT). State diagram of OCP master BFM is shown in Figure. 10.
[image: image10.png]stLenln==0 MBurstLength=BurstLenin

I
din==001and BY MBusrtSeq-Burstseqin

mcm!

==01
SCmdA:cept::l apd SResp’

MCmd=001
MAddr=Addrin
Mdata=ReadFile()

MCmd=001
MAddr=Addrin

MCmd=001
MAddr=Addrin
Mdata=ReadFile()

MCmd=001
MAddr=Addrin

MCmd=001

MAddr=Addrin

SCmdAccept!=1 Mdata=ReadFile()





Figure. 10. OCP Master State Diagram
 Each transaction in OCP protocol has two phases namely request phase and response phase. Request phase ends when slave accepted the command (request) and response phase starts. All Requests are accepted in Idle state, request phase start from Idle state. As request received in Idle state Next state is determined according to signals asserted and drives all OCP signals as specified in protocol.
E. AXI Slave BFM:
The AXI slave design is also similar to AXI master, contains the 2 FSM one to control the WRITE transactions requests and other one to control the READ transaction requests.
AXI Slave WR FSM:
     AXI slave WRTE FSM contains the 3 states namely Idle, WR and SendResp. FSM is shown in figure 8. AXI slave latch the address present on AWADDR into ADDRWR when AWVLID is asserted. Address in ADDRWR is used for addressing the memory and next address is calculated according to the burst sequence defined by AWBURST [2]. The address sequence calculation is performed by concurrent process. For WRAPPING burst upper and lower bound address also calculated in concurrent process. AXI slave WRTE FSM is shown in Figure. 11.
[image: image11.png]


 
Figure. 11. AXI Slave WRITE State Diagram
AXI Slave Read FSM:
The AXI slave read FSM controls the read operation by two states namely Idle and RD. In the Idle state requests are accepted and read operation is performed in the RD state.

AXI slave latch the address present on ARADDR into ADDRRD register when ARVLID is asserted. Address in ADDRRD is used for addressing the memory and next address is calculated according to the burst sequence defined by ARBURST. The AXI Slave READ State Diagram is shown in Figure. 12. 
[image: image12.png]ARValid=1

RDATA=0; RVALID=0 ;
RLAST=0; ARREADY=1;

@positive_edge(AClk)
If(RE=1)
RDATA=MEMORY(AddrRd)
RVALID=1

Idle

RD
ARREADY=0;RE=1

\C /

SCountI=1/RLAST=0

if(ARVALID==1) {ADDRRD=ARADDR, SCount=ARLEN+1}
@positive_edge(ACIk) If(RE=1 and RReady=1)
{SCOUNT=SCOUNT-1;

If(AWBURST=10and ADDRRD== WRAPB)
ADDRRD=WRAPL else ADDRRD=ADDRRD+4;





Figure. 12. AXI Slave READ State Diagram
F. Assertions Checkers
Assertion-based verification (ABV) is such a method, which combines assertion and simulation techniques to the traditional function verification. Assertion is used to describe the properties that a design should hold or should never hold. Some properties with time requirements are not easy to be described with Verilog, and usually needs much more lines of codes with VHDL. There are many standardized assertion languages such as PSL, SVA and assertion libraries such as OVL, with which the endeavor for describing a design property becomes much easier and efficient. Recently, System Verilog Assertion (SVA), as a set of System Verilog language, has been more extensively used as specification of assertions within the design, enabling the simulator to check the assertions during simulation.
AXI SVA Checker:

We integrated standard AXI protocol checker written using System Verilog language provided by ARM. This used to ensure bridge designed properly and AXI interface behaving according to AXI protocol.

OCP SVA Checker:

OCP protocol checker is written in System Verilog to check properties of OCP protocol. In this module we declare all OCP signals required for supporting generic profile and parameters such as OCP data bus width and address bus width. These OCP SVA assertions to enforce protocol rules and make sure OCP interface behaves according to protocol compliance.
G. Test Cases
The test case covering different scenarios are written separately and referred with different names.

Test Case File Format:

[image: image13.png]WR 0004 5 ].'::> Burst Sequence

‘-::> Burst Length
Start Address

Command or Request





Scripts are written to pick the test case as our wish, compare “golden file” with “out file” generated during simulations and running regression. 
IV.   RESULTS 

Coverage Report:
Coverage report is generated by merging coverage information from each test case.
[image: image14.png]Module Instance : WRAPPER_BRIDGE.OCP_AXI_BUSBRIDGE_DUT

------Nﬂ WASTER_OUT
INSTACE_LATCH
oCP_SLAVE_DUT





Spyglass Report:
Spyglass is run on Bus Bridge providing top entity name and all source files. The report is summarized in Table I. 

TABLE I
SPYGLASS REPORT
	Category
	Error 
	Warnings
	Information Massage

	Blackbox Resolution
	0 
	0 
	0 

	SGDC Checks
	0 
	0
	0

	Policy lint
	0
	92
	0

	Total
	0
	92
	4


V. Conclusions

We designed the OCP-AXI Bus Bridge with Generic Profile supporting Simple extension, Burst extension, Data Handshake phase. It is verified using AXI and OCP assertions. Bridge can be made to support High-performance Profile by adding tag extension.
References

[1] Open Core Protocol International Partnership (OCP-IPv3.0) specifications http://www.ocpip.org.
[2] AMBA Advanced eXtensible Interface (AXIv2.0) specification. http://www.arm.com/.
[3] Chih-Wea Wang; Chi-Shao Lai; Chi-Feng Wu; Shih-Arn Hwang; Ying-Hsi Lin; , "On-chip interconnection design and SoC integration with OCP," VLSI Design, Automation and Test, 2008. VLSI-DAT 2008. IEEE International Symposium on , vol., no., pp.25-28, 23-25 April 2008
[4] Shihua Zhang; Ahmed, A.I.; Mohamed, O.A.;, "A re-usable verification framework of Open Core Protocol (OCP)," Circuits and Systems and TAISA Conference, 2009. NEWCAS-TAISA '09. Joint IEEE North-East Workshop on , vol., no., pp.1-4, June 28 2009-July 1 2009
[5] Reinaldo A. Bergamaschi1; William R. Lee;, “Designing Systems-on-Chip Using Cores”, DAC 2000, Los Angeles, California.
































































