Proceedings of the International Conference “Embedded Electronics and Computing Systems(EECS)” 29-30 July, 2011 by S K R engineering COLLEGE,CHENNAI-600123

Snippet of Multiple Spatial Queries Using Ellipse
K.Padmapriya, Dr.S.Sridhar,
Research Scholar, Director(R & D),
Sathyabama University SKR Engineering College

ABSTRACT

Group nearest neighbor (GNN) queries are a relatively new type of operations in spatial database applications. Different from a traditional kNN query which specifies a single query point only, a GNN query has multiple query points. Because of the number of query points and their arbitrary distribution in the data space, a GNN query is much more complex than a kNN query. In this paper, we propose a pruning strategy for GNN queries which take into account the distribution of query points. Our method employ an ellipse to approximate the extent of multiple query points, and then derive a distance using that ellipse to prune intermediate nodes in a depth-first search via an R*-tree. These methods are also applicable to the best-first traversal paradigm.
1. INTRODUCTION

Nearest neighbor (NN) queries and k nearest neighbor (kNN) queries constitute a very important category of queries in database studies. They have many kinds of applications, including but not limited to geographic information systems (GIS), CAD/CAM, multimedia, knowledge discovery and data mining. In spatial databases, datasets are usually indexed by spatial access methods (SAM) such as the R- tree and the R*-tree. Several kNN algorithms using such SAM and relevant performance analysis have been proposed. Besides, multi-step methods and transformation methods , approximation and range constraints have also been proposed for kNN queries. As an extension of the kNN query, the group nearest neighbor (GNN) query has more than one query point, and its objective is to minimize the sum of distances from each resultant point to all query points. For example, several friends in a city may want to find a place to meet, and they hope the sum of their distances to the place is minimal so that they can reduce their total travelling cost. GNN queries can also be applied to data clustering, outlier detection and abnormality detection .

GNN queries are more complex compared to traditional kNN queries mainly for two reasons. One is that multiple query points are specified, which requires more distance computation. The other is that query points may be distributed within the data space in arbitrary ways, creating a large search region. However, the ideas behind kNN query processing can also be adapted for GNN queries.

The scenarios of GNN queries in assume a static dataset and several query points, with the former being indexed by an R-tree. Based on these assumptions, several processing algorithms were developed in that work. Those processing techniques for GNN queries were inspired by pruning metrics and corresponding algorithms used for traditional kNN queries, and were derived from adapting the old methods to the new requirements. Those algorithms also consider whether all query points can fit in memory, and deal with them accordingly.
The methods proposed in for multiple memory-resident query points may be reconsidered and further improved. Specifically, the multiple query method (MQM) does not consider the distribution of query points at all, the single point method (SPM) approximates the centroid of all query points instead of their extent shape, to prune unqualified tree nodes. Bearing in mind that the distribution of query points is very important to query processing, and their centroid can hardly reflect their distribution accurately, we are motivated to find new and more efficient pruning strategies for GNN queries.

In this paper, we propose new pruning strategy for GNN query processing via the R* tree. We assume that all query points can fit in main memory. Our methods take into account not only the number of query points, but also their distribution in the data space. We use an ellipse to approximate the extent of all query points, to prune intermediate index nodes during search via the R* tree. Our pruning strategies are applicable to both the depth-first and best-first traversal paradigms.

2. OUR PRUNINGMETHODS

2.1 Motivation

In a kNN query processing, the search bound is determined by the farthest data point in the query result, i.e., the k-th nearest neighbor NNk. Specifically, the search bound can be described as a circle, whose center is the query point q and radius is dist(q,NNk). We use ε to represent such a bound.

Similarly but more roughly, a GNN query can be regarded as the equivalent of a corresponding range query, i.e., for the k-th distance value εk = max {dist(p,Q) | p ε GNNkQ}. Both queries return the same result set and retrieve all objects in P that have a distance from Q not greater than εk. In other words, GNNkQ = rangeQ(εk) = {pi ε P | dist(pi,Q) ≤ εk, 1≤ i ≤ k}. However, in a GNN query, it is difficult to determine and describe the search bound because of the number of query points and their arbitrary distribution. Nevertheless, we can still get some inspiration from the search bound of a kNN query.

In the kNN query context, the single query point and the farthest qualified neighbor together decide a circle while for GNN queries, there are more than one query point involved. A straightforward idea is to change the circle to other possible geometry shapes since the number of query points has increased from one to more. Then for the case of two query points, we have a good choice – the ellipse, which is the trajectory of all points whose distances to two specific points (i.e., the two foci of that ellipse) are fixed. All points inside the ellipse are nearer to the two foci than those on it while all points outside are farther. This suits GNN queries with two query points.

The ellipse idea above can be further applied to GNN queries with more than two query points. This is because the ellipse is the simplest geometric shape besides the circle that can be used to deal with distance. The issue now is how to determine an ellipse for more than two query points. First, we need to pick two query points as the foci of the estimated ellipse. Later, we will address how to choose foci from the query set Q.

2.2 Distance Pruning Method Using an Ellipse

Although it is difficult to use a universal and simple equation to describe the search bound for a GNN query, we may still use one circle or one ellipse to embrace the bounding shape of the query set Q. The extent of that shape is determined by the distance from the k-th nearest neighbor to the query set Q.

Considering the circle and the ellipse, it is clear that at the same distance value, the area embraced by the circle is larger than that by the ellipse. For instance, if a pair of points with distance c _ 0, then the ratio is:

Area circle
 л ε 2
Area ellipse л ε √ε 2 – c 2 / 4

ε

 √ε 2 – c 2 / 4

> 1

Our first pruning strategy is as follows: If a point or an MBR is far away enough with respect to the two points we choose as the approximate ellipse, they cannot be in the final answer. The strategy is presented below:
Lemma 1 Let qi and qj be a pair of query points in Q, and max_dist be the distance of the k-th GNN found so far. A node N in the R*-tree (or a point p) can be safely pruned if: mindist(N, qi) + mindist(N, qj) ≥ max dist (or dist(p, qi) + dist(p, qj) ≥ max dist).
Proof. For node N, we consider any point p covered by it. The distance from p to query set Q is dist(p,Q) =

∑|Q|i=1 dist(p, qi) ≥ ∑|Q|i=1 mindist(N, qi) ≥ mindist(N, qi) +mindist(N, qj). This, together with the given condition, leads to dist(p,Q) ≥ max_dist, which means node N does not contain any point nearer the query set Q than the k-th GNN found so far. Thus, it is safe to prune node N.
For point p, we have dist(p,Q) = ∑|Q|i=1 dist(p, qi) ≥ dist(p, qi) + dist(p, qj). This, together with the given condition, also leads to dist(p,Q) ≥ max_dist, which means p cannot be nearer Q than the k-th GNN found so far.
An example of Lemma 1 is shown in Figure 1. A, B, C and D are four intermediate R*-tree nodes, and query set Q has two points qa and qb. Suppose the access order of all nodes are A, D, B and then C. In the figure, the values of mindist(N, qa) + mindist(N, qb) are 17, 12, 17 and 19, for A, B, C and D respectively. Suppose point g in A is the current nearest neighbor, its distance to query set Q dist(g, qa) + dist(g, qb) is 18.5. That value can be used as a pruning distance. Thus, node D can be pruned first, and another potential node B is considered. Point h in B will be the new nearest neighbor, and the pruning distance will be updated to dist(h, qa) + dist(h, qb) which is 14. In node C, there is no other point nearer to Q than h. Therefore, the NN for Q of qa and qb is point h in node B.
[image: image1.png]

Figure 1: Example of Lemma 1
Algorithm1 : GNN(Q, k)

Input: Q is the query points set

k is the number of NNs to retrieve

Output:GNN query result

1. answerSet = Ø; max dist = 1;

2. find a pair of query points

 qi and qj with maximum distance;

 // call recursive algorithm on R-tree

3. dist_ellipse_GNN(node, Q, k,
 answerSet, max_dist, qi, qj);
Algorithm for ellipse-based distance pruning method
We now consider the issue of how to choose the two foci for an approximate ellipse. For an ellipse with equation:

 x2
[image: image2.png]

 y2 = 1 (a > b > 0),
 a2
 b2
the distance sum from any point p on it to its two foci (say qa and qb) is 2a. To prune a node N or a point p′, we want mindist(N, qa)+mindist(N, qb) or dist(p′, qa)+dist(p′, qb) to be large. Assume N or p′ is on the ellipse, then these two distance sums will increase as a increases. Therefore, we prefer large possible values of a. To achieve this, we choose two points from query set Q between which the distance is the largest among all pairs.

Algorithm2 : dist ellipse GNN(node, Q, k, answerSet, max dist, qi, qj)

Input: node is an R-tree node

Q is the query points set

k is the number of NNs to retrieve

answerSet is the set of NNs so far

max dist is the distance to the k-th NN so far

qi, qj are the farthest pair of points in Q

Output:GNN query result

1. branchList = Ø;

2. if (node is not a leaf node)

3. for each entry sub in node

4. if (mindist(sub, qi) + mindist (sub, qj) ≥ max_dist)

5. continue;

6. insert sub into branchList,

 keep it sorted on mindist(sub,Q);

7. for each entry sub in branchList

8. dist ellipse GNN(sub, Q, k,

 answerSet, qi, qj);

9. else

10. for each data point pi in node

11. if (dist(pi, qi) + dist(pi, qj) ≥

 max_dist)

12. continue;

13. if (dist(pi,Q) ≥max_dist) continue;

14. insert pi into answerSet,

 keep it sorted on dist(pi,Q),

 and update max dist if necessary;

 // perform upward pruning

15. pruneBranchList (max_dist,
 branchList, k);
Algorithm for dist ellipse GNN
Algorithm3 :pruneBranchList(max_dist, branchList, Q, k)

Input: max_dist is the filtering distance

branchList is the list of sub-nodes to search

Q is the query points set

k is the number of NNs to retrieve

Output:updated branchList

1. for each node N in branchList

2. if (mindist(N,Q) > max dist)

3. remove N from branchList
Algorithm for Branch pruning
The algorithm for the ellipse-based distance pruning method is presented in Algorithm1. A depth-first search for GNN queries with the ellipse-based distance pruning strategy is presented in Algorithm2, and it calls the branch list pruning algorithm presented in Algorithm3. Note that though we use the depth-first traversal to explain our ellipse-based pruning strategy, the strategy is also applicable to the best-first traversal paradigm.

3. EXPERIMENTAL SETTINGS
Two real geographical datasets should be used to evaluate the proposed algorithms. For both datasets, the R*tree will be used as the index structure.
Three performance factors will be tested: (1) the cardinality n of query point set Q, (2) the distribution of all query points in Q, and (3) the k value, i.e., the number of retrieved neighbors. We should use workloads of 100 queries randomly distributed in the data space, and the performance should be averaged over all the 100 queries. The same set of queries should be used for all methods in the comparison. We have to evaluate the performance of various methods with two measures: page accesses and response time. After that, we can find out that our method is the most efficient method.

4. CONCLUSION

Group nearest neighbor queries are more complex than traditional kNN queries because they have multiple query points and those query points may be in arbitrary distribution. In this paper, we have developed a pruning strategy for GNN queries over spatial datasets indexed by the R*-tree. By taking into account the distribution of all query points, we use an ellipse to approximate the query extent. Then a distance or MBR derived from the ellipse is used to prune intermediate index nodes during search. Our pruning strategy can be used in both the depth-first and best-first traversal paradigms. The experimental results will demonstrate that our proposed methods outperform the existing ones significantly and consistently with real geographical datasets, in both page access number and CPU time.
5. REFERENCES

[1] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, A. Y. Wu. An Optimal Algorithm for Approximate Nearest Neighbor Searching Fixed Dimensions. Journal of ACM, 45(6):891-923, 1998

[2] C. Aggrawal, P. Yu. Outlier detection for high dimensional data. In Proc. of ACM SIGMOD Int’l Conference, 2001.

[3] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. The R∗-tree: An efficient and robust access method for points and rectangles. In Proc. of ACM SIGMOD Int’l Conference, 1990.

[4] M. Ester, H.-P. Kriegel, and J. Sander. Knowledge discovery in spatial databases. Invited paper at German Conf. On Artificial Intelligence, 1999.

[5] H. Ferhatosmanoglu, I. Stanoi, D. Agrawal, and A. E. Abbadi. Constrained Nearest Neighbor Queries. In Proc. of Symposium on Spatial and Temporal

Databases (SSTD), 2001.

[6] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in time-series databases. In Proc. of ACM SIGMOD Int’l Conference, 1994.

[7] A. Guttman. R-tree: a dynamic index structure for spatial searching. In Proc. of ACM SIGMOD Int’l Conference, 1984.

[8] G. Hjaltason, and H. Samet. Distance browsing in spatial database. ACM Trans. on Database Systems, 24(2):265-318, 1999.

[9] D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis. Group nearest neighbor queries. In Proc. of Int’l Conf. on Data Engineering (ICDE), 2004.

