Proceedings of the International Conference “Embedded Electronics and Computing Systems(EECS)”
29-30 July, 2011 by S K R engineering COLLEGE,CHENNAI-600123

[image: image1.png]

Abstract -- Mashup Services System is a service-oriented approach to generate and manage mashups. The approach is realized using the Mashup Services System (MSS), a novel platform to support users to create, use, and manage mashups with little or no programming effort. The approach relieves users from programming-intensive, error-prone, and largely nonreusable output process for creating and maintaining mashups.

To address the challenges faced by current mashup technologies, an end-to-end service-oriented approach for managing the life cycle of mashups is introduced. “End-to-end” refers to a set of core components required to have a usable and functioning system. The system need not be complete. All mashup feeds are available in the form of web services and web services are published and subscribed using formal service ontology. The Mashup profile comparison used to specify a comparison data set and parameters. The comparison of expression data sets from two different experimental conditions, and particular allows automatic identification of statistically significant sets.

 Keywords: web2.0, semantic web, matchmaking, mashup, yahoo pipe, google map

1. INTRODUCTION

Web 2.0 is a trend that aims at transitioning the World Wide Web to the realm of human-human interactions, where users are both producers and consumers. Mashups are emerging as a driving technology for creating these ad hoc applications. Mashups enable web users to combine data and tools dispersed over the web to create new applications that can satisfy various needs. In recent years, a number of Mashup platforms have been produced by various industry players. Well-known products include Yahoo Pipes, IBM Mashup Center, and Intel Mashmaker. These platforms have different features but they support users with a similar set of functionalities aiming to relieve users from the tedious engineering work in creating mashup applications.

[image: image2.emf]2. FUNCTIONALITIES

Repositories for collecting web resources that can be used to create mashups. These resources, known as feeds, are usually provided in the form of web services, AJAX APIs or RSS.

Tools for users to combine feeds into mashups. In theory, mashups are programs coded using pro-gramming languages such as AJAX or JAVA Script and run from web browsers. These tools attempt to simplify the programming work by using graphic models and templates. However, programming cannot be completely avoided.

Infrastructures for testing, hosting, and publishing mashups. Some platforms even allow users to rate or comment on the published mashups. These features are fund

3. PROBLEM STATEMENT

Mashups aim to glue together existing online services and data into entirely new applications in a rapid and inexpensive way. One of the main reasons may be related to the various obstacles faced by an average user in creating new personalized applications using existing mashup technologies. In what follows, we discuss some of these obstacles.

Procedural approach to building new applications. Existing mashup tools and technologies expect users to have full knowledge of not only the types of applications to build but also methods to build them. The mashups platform should adopt a declarative approach to provide mashup tools and platforms to a wide range of users. In the declarative approach we envisage, users specify their needs and requirements declaratively. The underlying platform responds by selecting appropriate information resources, composing alternate mashup applications, optimizing the applications satisfying user’s needs and preferences,building the mashup application by instantiating appropriate information resources, and executing the application and returning the results to the user. These activities within the platform are performed with the help of a semantic framework.

Programming competency requirements that are beyond the average web user’s expertise. Existing platforms assume that users have sufficient knowledge of web applications such as basic knowledge of Web Services, AJAX, or workflows. Ad hoc development of mashups supported in the existing platforms leads to functionalities that are
largely static, thus, catering for a shrinking user population.

Lack of a framework for support and management of mashup applications. Consequently, large-scale adaptation of end-user mashup applications becomes challenging. If average users unleash hundreds of new applications, these applications need to be organized and managed in such a way that they can be searched, queried, composed, and executed as part of the mashup application. This is a genuine challenge and the ideal mashup platform must have some framework for support and management of mashup applications.

Lack of support for provision and management of information quality and accuracy. One of the classical problems in information integration is the quality and accuracy of the information and its sources. Mashups exacerbate this problem as there is no means for ascertaining the quality and accuracy of information in existing platforms. Therefore, it is necessary for mashup platforms to have a provision of trust to ensure that end users can be assured of the quality and accuracy of the behaviors and outputs of the mashup applications.

4. COMPOSING WEB SERVICES
ON THE SEMANTIC WEB

An ontology is a shared conceptualization based on the semantic proximity of terms in a specific domain of interest[4]. Ontology’s are increasingly seen as key to enabling semantics-driven data access and processing. They are expected to play a central role in the Semantic Web, extending syntactic service interoperability to semantic interoperability

The model to enable unambiguous service description in [4]. The model describes a service from different perspectives. The most important features include Category, Operation, Binding, and QoS. Category defines the domain of a web service. For instance, Investment and Living are both domains of the House Purchasing Service. Operations defines the atomic activities a service can perform. Each operation is described using Input, Output, Precondition, and Effect (IOPE). With this information, automatic mashup can be achieved through logical reasoning. Bindings defines the detailed protocols for services to communicate with each other, such as the semantics and format of messages. QoS defines the nonfunctional properties of a service, such as price and availability. All services in MSS are described following this model using a domain ontology that is defined by a community. With a uniform model of semantic description, understanding and reasoning over services can be automated.

5. MATCHMAKING OF SEMANTIC
WEB SERVICE

Semantic web service (SWS) matchmaking is at the very core of any SWS [7] discovery framework and purpose an ontology-based measure combined logic-based reasoning approach with semantic similarity based approach. The Profile a service describes what it actually does in terms of its signature, which is its inputs and outputs, as well as preconditions and effects, and non-functional aspects. Inputs and outputs of a service are expressed as concepts belonging to a set of ontologies. The model profiles all start at 0 [6], and then between two time points a model profile can either hold steady or increase or decrease an integral number of time units up to a parameter value. Gene expression time’s series are transformed to start at 0, and each gene is assigned to the model profile to which its time series most closely matches based on the correlation coefficient.

6. SYSTEM ARCHITECURE

[image: image3.png]Profile 48

Profile #48:(0,2,2,1,3)
Expression Change

ey 150.0 Genes Assigned; 58.0 Genes Expected; p-valus = 1.7E-24 (significant)
5.0 ofthe 7.0 genes assigned to Profils 20 inthe original experiment wers also assigned to this profls (p-valus

Identified three major components to manage mashups: query and composition, optimization, and trust management, called Mashup Services System (MSS) to implement the proposed approach. MSS goes beyond the existing mashup platforms to provide on-demand, automatically generated, and customized mashups. Users only need to declare their needs. MSS would then automatically select appropriate services and create mash ups that best satisfy the user’s requirements. When interacting with MSS, users are only aware of the services they

[image: image4.png]Profile 48

Profile #48:(0,2,2,1,3)
Expression Change

ey 150.0 Genes Assigned; 58.0 Genes Expected; p-valus = 1.7E-24 (significant)
5.0 ofthe 7.0 genes assigned to Profils 20 inthe original experiment wers also assigned to this profls (p-valus

receive while being oblivious to how a mashup is created, optimized, and maintained.

6.1 Modules:

· The Mashup Query and Composition component analyzes a user’s request and generates a number of candidate mashups that meet the user’s requirements.

· The Mashup Optimization component evaluates different mashup options generated for the user and selects the optimal mashup in terms of the user’s functional and nonfunctional requirements.

· The Mashup Trust Management component provides a trust framework for enabling the selection of services based on trust parameters.

6.2 Semantic Web service

The automatic generation of a customized mashup depends on the organization of component services participating in the mashup. The model describes a service from different perspectives. The most important features include Category, Operation, Binding, and QoS.

Category defines the domain of a web service. For instance, Investment and Living are both domains of the House Purchasing Service.

Operations defines the atomic activities a service can perform. Each operation is described using Input, Output, Precondition, and Effect (IOPE). With this information, automatic mashup can be achieved through logical reasoning.

Bindings define the detailed protocols for services to communicate with each other, such as the semantics and format of messages.

QoS defines the nonfunctional properties of a service, such as price and availability. All services in MSS are described following this model using a domain ontology that is defined by a community. With a uniform model of semantic description, understanding and reasoning over services can be automated.

6.3 MASHUP QUERY AND COMPOSITION:

Query Model

A query model consists of a query interface, a query language, and a query engine. The interface allows users to specify what they want (goals) at semantic level and leave mashup generation to MSS. Considering these requirements, our query interface is designed to be web based and have form like features where users can declaratively specify their query. Different Graphical User Interfaces (GUIs) are needed for end users to generate mashups interactively in different application domains. The GUI presents the abstractions of underlying domain knowledge with the help of the domain ontology. The
underlying query language is hidden behind the GUI, which is similar to JDBC code for databases.

The query obtained from the GUI is translated into Mashup Service Query Language (MSQL), the XML service query language developed as an interface to MSS query engine. The schema for MSQL is shown in Fig MSQL emulates database SQL in query structure. For example, user want to do something (select, insert, update, delete...) somewhere (from, into...) if some conditions meet (where...). However, the scope and notations that MSQL aims to express are much wider and richer than database SQL.

Therefore, extend SQL with any Action followed by a set of Tasks. By composing the two variables Action and Task with support from the domain ontology, MSQL is capable of expressing goals that the users want to achieve across a wide range of domains, for example, “find houses,” “book flights,” and “buy books.” Note that unlike keyword-based information searching, MSQL is able to specify nonfunctional requirements using standard SQL-like prediction clauses.

For example, users request for purchasing a house can be expressed in the following query: “To find houses in a Sydney Suburb (postcode = 2000) with interest in local schools, whose price is less than 500,000” via a webpage or a GUI-client, which will send the query to MSS in MSQL as following Fig.. When MSS receives a query, MSS first conducts input syntax check and generates a parser tree as shown in next Fig.

Then, MSS uses the parser to work out:

1. Domain = “RealEstate”

2. Goal = “find properties”

3. Input: location = “Chennai, Tamil Nadu”

4. Condition: price 500,000

MSS will first search the corresponding domain to check if there is a reusable mashup that can satisfy this query.

7. OWL-S Semantic Markup for Web service

Semantic web is not merely a collection of marked up content but includes (software applications packaged as) services as well. It is essential for a software agent to discover, compose, invoke and monitor web resources in order to take advantage of a service. OWL-S is a language for describing services which makes this possible. OWL-S is required to perform following tasks automatically.

· Web Service Discovery: Extract the information from the page in order to find a required service.

· Web Service Invocation: OWL-S along with the domain ontology specifies the invocation methods of a Web Service (e.g. necessary inputs, expected outputs).

· Web Services Composition and Interoperation: OWL-S provides declarative way to specify prerequisite and consequences of a service which helps software agents in composing different web services.

OWL-S provides Service Profile, Service Model and Service Grounding to represent Description, Functionality and Access Mechanism respectively.

Service Profile: Service profile facilitates Service Provider to describe its service. It is up

to the Service Provider how much details are given in the Service Profile. E.g. a Book selling service may also provide browsing facility but it is not necessary that it is included in Service Profile. We can categorize the information provided by Service Profile as:

· Provider’s Information - This may include name of the provider and contact details.

· Functional Description - specifies inputs required, output generated and conditions to be set at the beginning and change in the real world after service completes its function. In short, inputs, outputs, preconditions and effects are described here.

· Profile Attributes - Some parameters that service wants to specify e.g. quality guarantees, service categorization etc. They are represented by Service Parameter and Service Category.

Service Model: It describes service as a process, either atomic or composite: receives and sends a single message or retains/changes state through a sequence of messages. A service can give some output and set some condition thus changing real world.

· Inputs and output parameters are expressed as a subclass of the parameter class in OWL-S.

· Preconditions and effects are modeled as logical formulas or expressions which are treated as either string literals or XML literals depending on the language used. The expression class in OWL-S specifies two separate subclasses condition and effect for precondition and effect respectively.

OWL-S is the de facto standard for describing semantic meta data about web services, which is based on the OWL ontology language. Basically, a service provider describes its advertised services in an OWL-S compliant ontology and a service requester queries for services with an OWL-S ontology expressing his requirements. The OWL-S ontology is organized in three modules: the Service Proﬁle module tells what the service does; the Service Model module describes how the service works; and the Service Grounding module describes how to access the service. Service Proﬁle deﬁnes a service in terms of its Inputs, Outputs, Preconditions and Eﬀects. The matchmaking of SWS process contains 6 steps:

· Step 1: Service providers publish their services to the framework through a web user interface.

· Step 2: Advertised services with OWL-S interfaces are then loaded into the Service Repository.

· Step 3: When advertising services, service providers also publish service ontologies that can be deﬁned in OWL. These OWL ontologies are then parsed by an OWL parser and loaded into the Ontology Repository.

· Step 4: A user posts a service request to via its web user interface. The request is escribed in OWL-S.

· Step 5: The matchmaking process is divided into two steps. In this step, the Input/Output concepts in service request are matched using an OWL reasoner with ﬁve matching levels.

· Step 6: According to the results of step 5, the concept and service similarity computing component computes the similarity of requested service and advertised services in OWL- S service repository. Finally, it delivers the discovered matching services.

Greedy approach

It is based on semantic matchmaking based on input and output terms. Algorithm presented is a greedy approach for matchmaking. Algorithm tries to match every output concept of Query with one of the concepts of Advertisement. It starts from all output concepts (call it candidate list) of Query and removes a concept from candidate list as soon as it is matched with a concept from Advertisement with degree of matching.

Exact: If AdOp is an equivalent concept to QOp, then they are labeled as Exact match. If QOp is a subclass of AdOp, then match is considered Exact under the assumption that provider agrees to provide output in every possible subclasses of AdOp.

Plug in: If AdOp subsumes QOp, then AdOp can be plugged in place of QOp. Here also, it is assumed that provider agrees to provide output in some of the subclasses of AdOp.

Subsumes: If QOp subsumes AdOp, then service may fulfill the requirements of the request since advertisements provides output in some of the subclasses of the concept defined by QOp.

Fail: If no subsumption relation is found between QOp and AdOp, then it is declared as failure.

8. MASHUP PROFILE COMPARISONS

The Mashup profile comparison used to specify a comparison data set and parameters. The comparison of expression data sets from two different experimental conditions, and particular allows automatic identification of statistically significant sets of which are co-expressed under both experimental conditions.

Mashup profile comparison can automatically identify pairs of model profiles, one from each experiment, for which the intersection of the set assigned to the two profiles is statistically significant. Suppose there are N on the microarray, ni are assigned to a profile i in the first experiment, nj assigned to a profile j in the second experiment, and a total of t genes are in the intersection of the set of genes assigned to profile i in the first experi1-value of seeing t are more intersection is computed based on the hypergeometric distribution to be

The Mashup profiles Comparison are two parameters:

· Maximum uncorrected intersection p-value - The maximum uncorrected intersection p-value for the intersection to be of interest.

· Minimum number of genes in intersection - The minimum number of genes in the intersection of the set of genes assigned to two profiles for the intersection to be of interest.

8.1 COMPARING DATA SETS EXPERIMENTAL CONDITIONS

The model profiles are defined independent of the data, the boundaries in expression space that they induce will remain the same between experiments. In contrast, cluster boundaries from traditional, data driven, clustering algorithms will change between experiments.

Mashup profile comparison is thus able to detect significant sets of genes with the same expression profiles across experiments that might otherwise be missed if the clusters were defined differently across experiments. Furthermore since the model profiles are also selected to be distinct and representative of all expression profiles, Mashup profile comparison will determine for all pairs of distinct expression patterns if there is a significant gene set intersection. If the clusters had been formed with a data driven clustering algorithm no such guarantee is possible.

The profile pairs on the comparison interface can be rearranged based on the significance of the

intersection or how different the expression profiles are as measured by the correlation coefficient. On the main model profiles overview screen a user can reorder all the model profiles from one experiment based on the enrichment for a set of genes assigned to a profile or set of profiles in the other experiment.

 CONCLUSION

In this paper, implement and evaluated in service-based framework for managing the life cycle of Web 2.0 mashups. This framework consists of a set of techniques for querying, creating, optimizing, and trusting Mashups. The experimental results demonstrated that Machups comparing different profile (API) is effective, outperforms the existing measures has enhanced capability and usability and compared to existing Mashup technologies and tools.

REFERENCE

[1] Yahoo Pipes, http://pipes.yahoo.com/pipes, 2010.

[2] IBM Mashup Center, http://www-
 01.ibm.com/software/info/mashup-center, 2010.

[3] Intel Mashmaker, http://mashmaker.intel.com/web,
 2010.

[4] B. Medjahed, A. Bouguettaya, and A.K.
 Elmagarmid, “Composing Web Services on the
 Semantic Web,” VLDB J., vol. 12, no. 4, pp. 333-
 351, 2003.

[5] J. Rao, P. Kungas, and M. Matskin, “Composition
 of Semantic Web Services Using Linear Logic
 Theorem Proving,” Information Systems, vol. 31,
 nos. 4/5, pp. 340-360, 2006.

[6] J. Ernst, G.J. Nau , and Z. Bar-Joseph

 HYPERLINK "http://bioinformatics.oxfordjournals.org/cgi/reprint/21/suppl_1/i159?ijkey=oc7K2YEf3O5erwk&keytype=ref"
Clustering
 Short Time Series Gene Expression Data
 Bioinformatics (Proceedings of ISMB 2005), 21
 Suppl. 1, pp. i159-i168, 2005

[7] Yang Zhang, Fagui Liu, Nan Zhang. – Towards
 fine grained matchmaking of semantic web
 services based on concept similarity- information
 and computational science 8:2 (2011) 377-384

OWL-S SUPPORT FOR MASHUPS

Sathasivam . K, M.E. System engineering and operation research , Information and communication engineering , RCC, Anna University, Chennai, E-mail : � HYPERLINK "mailto:vsadhas@gmail.com" �vsadhas@gmail.com�

Mr. A.K. George, Assistant Professor, Information and communication engineering, RCC, , Anna University, Chennai ,

E-mail : gathappilly2000@gmail.com

<MSQL>

 <Action>Find</Action>

 <Task name=”Properties” domain=”RealEstate”>

 <Input name=”location” type=”string”>

 <value>Chennai, Tamil Nadu</value>

 </Input>

 </Task>

 <where>

	<Predictor name=”Price” relation=”<=” value=”50000”/>

 </where>

</MSQL>

Fig 4.3 – Mashup Query Model structure

 ∑ =

Min(ni,nj)

M=t

() ()

nj

m

N- nj

ni-m

N

ni

()

Profile IDs

Correlation between profile 38 and 13

Assigned to profile 38 in the first experiment

277 assigned to profile 38 in the first experiment that were also assigned to profile 13 in the second experiment;

Fig 4.8 – comparison profile ID

Fig 5.2 – Profile with plot all intersection

Fig 5.3 – plot only intersection

Mr. A.K. George

Assistant Professor

Information and communication engineering

RCC, Anna University, Chennai

E-mail : gathappilly2000@gmail.com

Fig 6.1 - Mashup Service System Architecture

6

