Proceedings of the International Conference “Embedded Electronics and Computing Systems(EECS)” 29-30 July, 2011 by S K R engineering COLLEGE,CHENNAI-600123

Lightweight Encryption-Based Security for Wireless Sensor Networks
L. Abraham Daivanathan Egan, I. Shatheesh Sam and R.S. Bhuvaneswaran
Ramanujan Computing Centre, Anna University, Chennai, India
abe.math@gmail.com
Abstract

Among the stream ciphers, Rabbit is a fast software-based encrypting cipher. It is found that the Rabbit cipher is vulnerable to Guess-and-determine (GD) attack. In this paper, Lightweight Encryption-Based Security for Wireless Sensor Networks, a lightweight encryption algorithm is proposed. The proposed cipher uses double XORing with keys and arithmetic modulo operation in the initial stage of the algorithm thereby making the attack difficult for the adversary. It is then compared with Rabbit Stream Cipher and also with the traditional RC4 for speed and energy consumed and better results for the altered version are obtained.

 Keywords

Wireless Sensor Networks, Rabbit Stream Cipher, Lightweight Encryption Algorithm, RC4, Guess-and-determine attack.
1. Introduction

Wireless Sensor Networks are increasingly gaining popularity because of the fact that they provide low cost solutions to a variety of real world problems. The WSNs comprising of hundreds of nodes possesses several advantages in terms of flexibility and cost over their wired counterparts. For its large application value, these networks find usage in medical and military environments [1]. They typically combine an 8-bit processor with memory, sensors, radio unit and power supply, called sensor nodes that collect data from their environments and then collaborate to transmit that data onto a sink node (base station) [2]. Since they use tiny, inexpensive sensors with several distinguishing characteristics such as having a very low processing power and radio ranges, permitting very low energy consumption and performing limited and specific monitoring and sensing functions this leads to a very demanding environment to provide security [3]. Therefore minimal consumption of power is an important requirement for any applications running on these nodes. As WSNs continue to grow and as they are being extensively used, so does the need to fulfil both the requirements of security as well as energy efficiency [4].
In [5], the authors proposed a new chaotic map based on Logistic map for the characteristics of WSN node. Then, by utilizing Feistel structure, which is beneficial to security, a block cipher based on chaos for WSN was proposed. It has small block size, low computational complexity and high encryption speed. The authors by a series of successful experiments showed that their cipher algorithm is safer and can be used in confidential communications. A year ago, in [6], Jiyun Yang et al., identified a serious defect in the round functions of the above chaos based block cipher by cryptanalyzing it using differential cryptanalysis theory. They first identified
[image: image1.png]

Figure 1 A representative of sensor networks

 Base Station, Sensor node, Low-power radio link, …. Low latency, high bandwidth link.

that the third round key can be recovered by chosen plaintext attack according to the characteristics of the round function and then the 4-round sub-keys have been attacked in the order of K3, K2, K1, and K4. They also found out that the sub-key in each round has nothing to do with the plaintext, and the key stream is the same as long as the seed key keeps unchanged. Using this fact, they successfully argue that once the key corresponding to each block has been attacked, the key stream as well as the seed key can be obtained and the algorithm can be totally cracked.
On the other hand, in [7], Canniere et.al pointed out that the stream cipher Trivium is safe from GD attack. But in [8], H. Ahmadi et.al prove that a GD attack can be mounted on any given stream cipher and going by this in [9], Neda Rohani et.al actually mount such an attack on Trivium by approximating the nonlinear update functions of the cipher with linear relations.
Following initial ideas from chaos, Rabbit [10] was designed to take advantage of the random-like properties of real valued chaotic maps. Although chaos has good potential for security, using an initialization vector in the Rabbit cipher does not provide the necessary resistance to GD attack. Like the stream cipher Trivium, Rabbit is also a synchronous stream cipher and as we have seen in [8] that any given cipher is vulnerable to GD attack, there is a possibility that the Rabbit cipher might be broken using the above attack.
In this paper, we propose the operation of our security model, the lightweight encryption algorithm, for wireless sensor networks that overcomes the above security threat by using two key streams and double XORing. The rest of the paper is organized as follows. Section 2 explains the Rabbit Stream Cipher. The GD attack the enhancement made to the Rabbit cipher is explained in section 3. Experimental results and analysis are presented in section 4 and the conclusion in section 5.

2. Rabbit Cipher
The Rabbit [10] is a symmetric synchronous stream cipher that uses a 128-bit key and a 64-bit initialization vector. The size of the internal state is 513 bits divided between eight 32-bit state variables, eight 32-bit counter variables and one counter carry bit. As Fig.2 shows, the update of the counter variables in a counter system is followed by the update of the state variables in the Next-state function in the four iterations during the Key and the IV setup phases.
2.1 Key Setup Phase
The key expansion operation algorithm is initialized by expanding the 128-bit key into both the eight state variables and the eight counters such that there is a one-to-one correspondence between the key and the initial state variables and the initial counters. The key is divided into eight subkeys and the state and counter variables are initialized from the subkeys. The system is iterated four times, according to the next-state function defined in section 2.3, to diminish correlations between bits in the key and bits in the internal state variables. Finally, the counter variables are modified to prevent recovery of the key by inversion of the counter system.

2.2 Initialization Vector (IV) Scheme

The IV setup scheme works by modifying the counter state as function of the IV. The system is iterated four times according to the next-state function defined in section 2.3, to make all state bits non-linearly dependent on all IV bits. The modification of the counter by the IV guarantees that all 264 different IVs will lead to unique key streams.

2.3 Next-State Function

The core of the Rabbit is the Next-state function as explained in [5]. It is involved in both key setup and keystream generation. It takes eight counter variables as input and produces a 128 bit keystream block after going through system iteration, counter modification and iteration of the g-function. The good diffusion and non-linearity properties of next-state function prevent against all known attacks. The inner workings of the next-state function is given below:

x0,i+1 = g0,i + (g7,i<<<16) + (g6,i<<<16)

x1,i+1 = g1,i + (g0,i<<<8) + g7,i
x2,i+1 = g2,i + (g1,i<<<16) + (g0,i<<<16)

x3,i+1 = g3,i + (g2,i<<<8) + g1,i

x4,i+1 = g4,i + (g3,i<<<16) + (g2,i<<<16)

x5,i+1 = g5,i + (g4,i<<<8) + g3,i
x6,i+1 = g6,i + (g5,i<<<16) + (g4,i<<<16)

x7,i+1 = g7,i + (g6,i<<<8) + g5,i

and

gj,i = ((xj,i + cj,i)2+(xj,i + cj,i)2>>mod32))mod 232
where all addition are modulo 232 .
3. The GD Attack and the Modified Rabbit
We begin this section by a short discussion about the GD attack. It is a kind of general attack which has been applied to some stream cipher algorithms such as Trivium [7]. In this attack, the analyzer considers the interconnections between the cipher’s building blocks. For applying such an attack, the attacker should guess a part of internal state variables, first. Next he determines the remaining part of the state according to the guessed values and the relations existed in the cipher. Finally by assuming that the cipher is loaded by guessed and determined values and running the algorithm, he compares the produced sequence with the observed one. If two sequences are equal, he concludes that the guessed values are correct. Otherwise the adversary should guess other values and repeat the steps until the two sequences become the same.

3.1 The GD Attack on Rabbit
An attack exploiting this possibility in Rabbit cipher can be formulated as follows. Divide the 32-bit state variables and counters into 8-bit variables. Construct an equation system consisting of the 32 8-bit subsystems for N iterations together with the corresponding (N+1)(8 extraction functions which are split into (N+1)(16 8-bit functions. In order to obtain a closed system of equations, output from 32 extraction functions is needed, i.e. N=3. Thus, the equation system consists of 160 coupled equations with 32 unknown counter bytes and (3+1) (8(4 unknown state bytes, i.e. a total of 160 unknowns.

Once a strategy for solving this system of equation is found by guessing as few input bytes as possible and determining the remaining unknown bytes then the algorithm is said to be cracked.

3.2 The Modified Rabbit
The proposed model in the paper, the modified Rabbit strengthens the cipher by using double XOR encryption and in addition to this the next-state function has been modified to compensate for the computational overhead caused due to double XOR encryption
.
[image: image2.png]Double

XoR

#
[Te Ths T 1 s [T Too Je——[15 |

(20l %sol #s0 [%ao] *20[%20 [*10] %ao] [€ra] Caol s [eol Cao [Czo[Crn [Conl+{ =2

[Fext state function (50 | «— [Comtersystem (0]

]

[ext state funcéion G5 |

[Counter system ()]

]

[ext state funcéion G50 |

-
[Fext state function (55) |+ [Cowter system ()]
-«

[Counter system (2]

[Fext state function (59 |« [Cowter system (9]
v

[Wext state function (50) | < [Counter system ()]

[Fextstate fumction () |« [Comter system ()]

¥

[Fextstate function (90 | +— [Counter system ()]

Figure 2 A procedure of key setup and IV setup

The Figure 2 throws light upon how the next-state function and the counter system works in conjunction with each other. The scheme for the double XOR encryption is presented below,
ei = pi
[image: image3.wmf]Å

k1
[image: image4.wmf]Å

keyj+1
mi = keyj+2
[image: image5.wmf]Å

ei
[image: image6.wmf]Å

k2
 ri = mi mod n j=1,2,3...N
where ei is the first encrypted text and it is passed as an input to the second encryption given by the above equation. pi is the ith plaintext, k1 and k2 are used as two constant keys and keyj+1, keyj+2 are the keys of rabbit key scheme. The subscript j takes its value from 1,2,..N to ensure thorough mixing. Finally ri stores the resultant cipher of proposed scheme. Here, n is used 27 bit for modulo operation. The scheme for the modified next-state function is given below:
x0,i+1 = g0,i + (g7,i<<<16) + (g6,i<<<16)

x1,i+1 = g1,i + (g0,i<<8) + g7,i
x2,i+1 = g2,i + (g1,i<<<16) + (g0,i<<<16)

x3,i+1 = g3,i + (g2,i<<8) + g1,i

x4,i+1 = g4,i + (g3,i<<<16) + (g2,i<<<16)

x5,i+1 = g5,i + (g4,i<<8) + g3,i
x6,i+1 = g6,i + (g5,i<<<16) + (g4,i<<<16)

x7,i+1 = g7,i + (g6,i<<8) + g5,i

The alternate iterates have been modified in the above system by using left shifting operator instead of circular shift. This coupled system is illustrated graphically in the following Figure 3.
[image: image7.png]

Figure 3 Graphical Illustration of Next-State Function

As two key streams are used the GD attacks are eliminated and we have obtained some results based on execution time, energy consumption and memory used by the sensors to justify our objective that the proposed modified Rabbit cipher is indeed lightweight.
4. Experimental Results and Analysis
The table 1 below shows the comparison of the execution time of Modified Rabbit Stream Cipher with the Rabbit Cipher and the traditional RC4 for 50 nodes.

Table 1. Execution Time.

	Nodes
	Execution Time

	
	Rabbit Cipher
	RC4
	Modified Rabbit

	50
	1.509
	15.507
	1.500

	100
	6.849
	36.376
	6.551

	150
	25.190
	82.497
	24.803

	200
	76.966
	121.123
	75.002

The table 2 below compares the consumption of energy by the sensors between different algorithms.

Table 2. Energy Consumption
	Algorithm
	Energy Consumed(mJ)

	Rabbit Cipher
	225.0712

	RC4
	245.4

	Modified Rabbit
	224.089

We now present a graph that shows the execution time of the Rabbit Cipher for 50, 100, 150 and 200 nodes based on Table 1.
[image: image8.png]Time in Secs

140
120
100
80
60
40
20

Execution Time

/

/
/ / ——Rabbit Cipher

/ / Modified Rabbit Cipher
/

~———RC4

e
_—

50 100 150 200 250

No. of Nodes

Figure 4 Execution Time for nodes of different size
The following graph shows the energy consumed by the Rabbit Cipher and RC4 for 50 nodes. The results were tabulated in Table 2.

[image: image9.png]Energy Consumed in mJ

250
245
240
235
230
225
220
215
210

Energy Consumption

Rabbit RC4

Modified Rabbit

Figure 5 Energy consumed in mJ
5. Conclusion
The challenging constraints and highly demanding hostile deployment environments make network security in WSNs more challenging as compared to the traditional networks. Many problems have their solutions using asymmetric key or computationally intensive protocols, but they do not suite the requirements of these tiny power and memory constrained devices. From the graph in Fig.3 we see that the curve corresponding to the Rabbit cipher lies above that of the cipher based on our lightweight encryption algorithm which suggests to us that our modified algorithm is faster than the original Rabbit cipher and thus meets the required lightweight criteria in its processing speed. From the graph in Fig.4 we see that the energy consumption is also lower for cipher based on lightweight encryption algorithm. Hence based on the above result we conclude that the lightweight encryption algorithm is indeed lightweight in nature and also immune to the GD attack.
References
[1]
Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E. (2002) “Wireless Sensor networks: a survey.” Computer Networks 2002; 38:393-422.

[2]
Saraogi, M. “Security in Wireless Sensor Networks”, Department of Computer Science, University of Tennessee, Knoxville.
[3]
Tahir, R., Muhammad Younas Javed, Attiq Ahmad and Raja Iqbal (2008) “SCUR: Secure Communications in Wireless Sensor Networks using Rabbit”, Proceedings of the World Congress on Engineering 2008, Vol. I WCE 2008, July 2–4, 2008, London, U.K.
[4]
Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler, and J.D. Tygar.(2001) “SPINS: Security protocols for Sensor Networks.” In The Seventh Annual International Conference on Mobile Computing and Networking (MobiCom 2001), 2001.
 [5]
Chen S, Zhong XX, Wu ZZ (2008) “Chaos Block Cipher for wireless sensor network.” Sci China Ser F – Inform Sci 2008; 51:1055-63.

[6]
Jiyun Yang, Di Xiao, Tao Xiang (2011) “Cryptanalysis of a chaos block cipher for wireless sensor network”, Commun Nonlinear Sci Numer Simulat 16(2011) 844-850.
[7]
De Canniere, C., Preneel, B(2008) “TRIVIUM – a stream cipher construction inspired by block cipher design principles”, new stream cipher designs: the eSTREAM finalists, LNCS, Vol.4986, Springer, 2008,pp.244-266.
[8]
H. Ahmadi and T. Eghlidos(2010) “Heuristic guess-and-determine attacks on stream ciphers”, IET Journal in Information Security, 2009, Vol.3, pp 66-73.

[9]
Neda Rohani, Zainab Noferesti, Javad Mohajeri and Mohammad Reza Aref(2010) “Guess and Determine Attack on Trivium Family”, 2010 IEEE/IFIP Proceedings of the International Conference on Embedded Ubiquitous Computing.

[10] Boesgaard,M.,Vesterager,M.,Christensen,T., and Zenner E. ‘The Stream Cipher Rabbit’ ECRYPT Stream Cipher Project Report 2005/2006.

_1368217748.unknown

